

Ch 4.3 - Logistic Regression

Lecture 10 - CMSE 381

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, Feb 4, 2026

Announcements

11	F	2/6	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #2 Due Mon 2/9	
	M	2/9	Project Day & Review			
	W	2/11	Midterm #1			
12	F	2/13	Class not held			
13	M	2/16	Leave one out and k-fold CV	5.1.1-3		
14	W	2/18	More k-fold CV	5.1.4-5		
15	F	2/20	k-fold CV for classification	5.1.5		
16	M	2/23	Subset selection	6.1		
17	W	2/25	Shrinkage: Ridge	6.2.1		
18	F	2/27	Shrinkage: Lasso	6.2.2	HW #3 Due Sun 3/1	
	M	3/2	Spring Break			
	W	3/4	Spring Break			
	F	3/6	Spring Break			
19	M	3/9	PCA	6.3		
20	W	3/11	PCR	6.3		

Announcements:

- Homework #2 Due Monday 2/9 on learning space
- Monday 2/9 - Review day
- Wednesday 2/11 - Exam #1
 - ▶ Bring 8.5x11 sheet of paper
 - ▶ **Handwritten** both sides
 - ▶ Anything you want on it, but must be your work
 - ▶ Must have your name and group number
 - ▶ You will turn it in
 - ▶ Calculator w/o internet

Covered in this lecture

Last Time:

- Classification basics
- Bayes classifier
- KNN classifier

This time:

- Logistic Regression

Section 1

Review from last time

Error rate

- Training data: $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

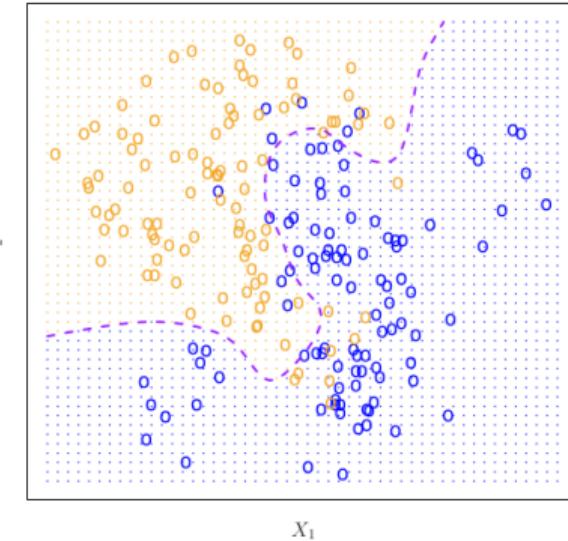
Training error rate:

$$\frac{1}{n} \sum_{i=1}^n I(y_i \neq \hat{y}_i)$$

Test error rate:

$$\text{Ave}(I(y_0 \neq \hat{y}_0))$$

Best ever classifier

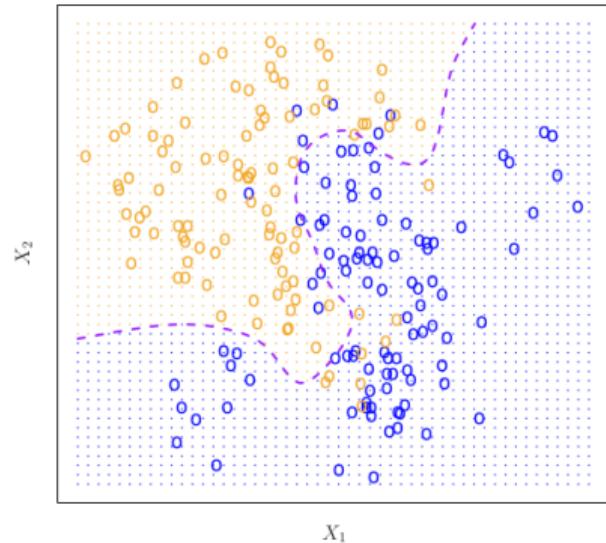

We can't have nice things

Bayes Classifier:

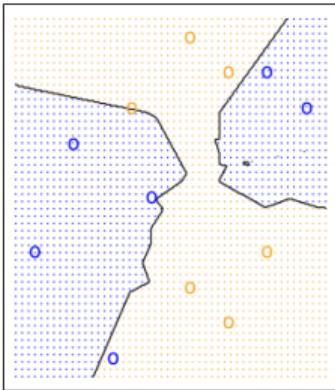
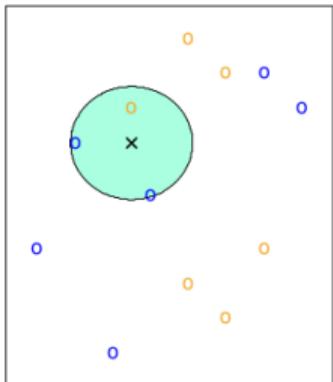
Give every observation the highest probability class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

Bayes Decision Boundary

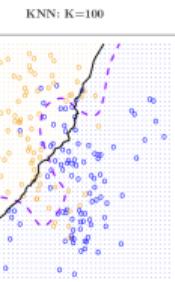
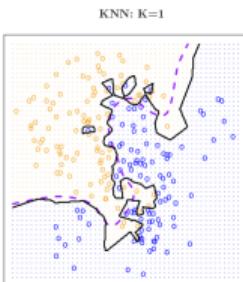

Bayes error rate

- Error at $X = x_0$



$$1 - \max_j \Pr(Y = j \mid X = x_0)$$

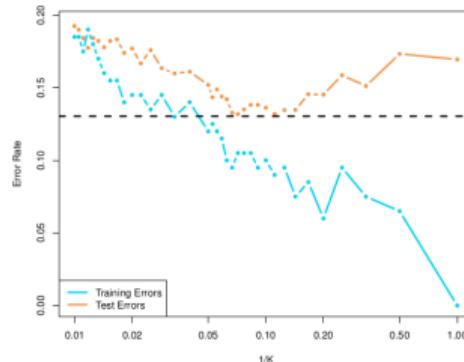
- Overall Bayes error:

$$1 - E \left(\max_j \Pr(Y = j \mid X = x_0) \right)$$

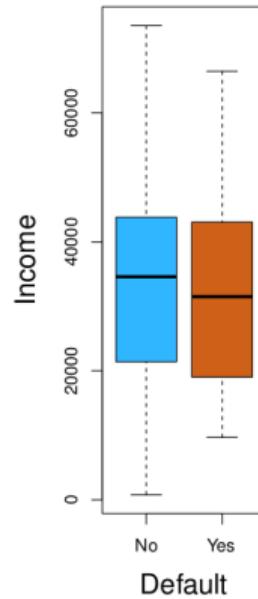
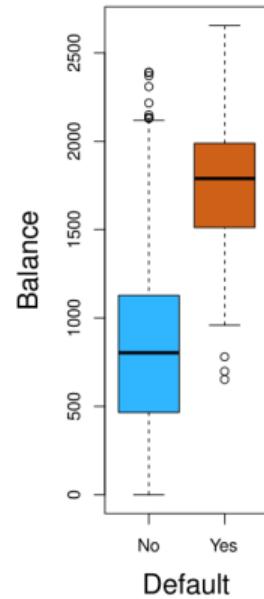
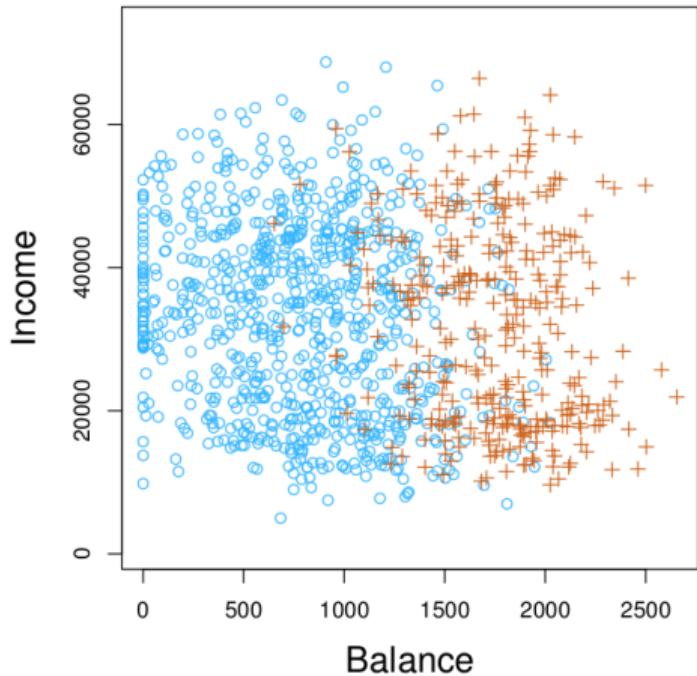
K-Nearest Neighbors

$K = 3$


decision boundary

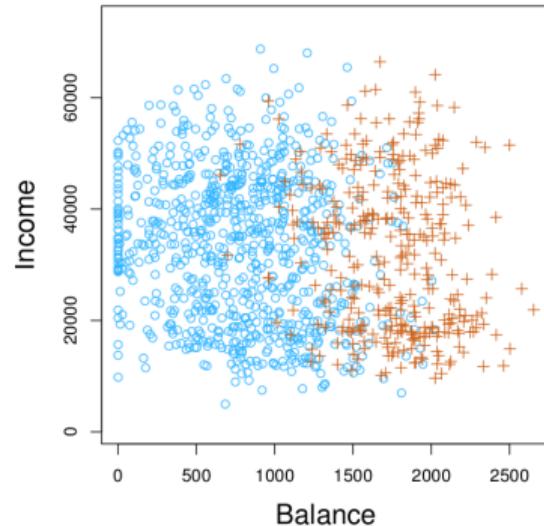
- Fix K positive integer
- $N(x) =$ the set of K closest neighbors to x
- Estimate conditional probability

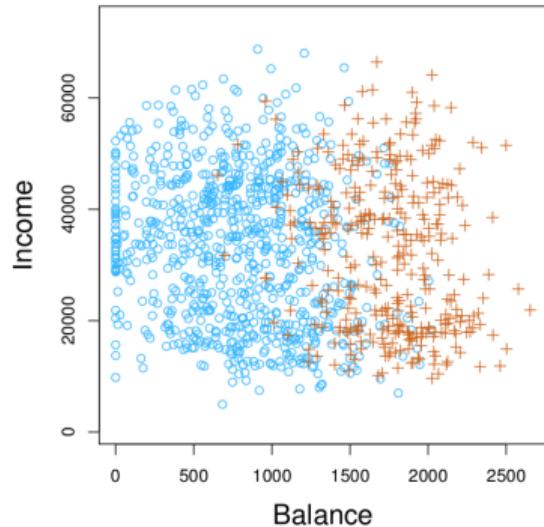
$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$




- Pick j with highest value

Section 2

Logistic Regression


Simulated Default data set


What is classification

- Classification: When the response variable is qualitative
- Goal: Model the probability that Y belongs to a particular category

$$p(\text{balance}) = \Pr(\text{default} = \text{yes} \mid \text{balance})$$

Goal for Balance data set

Goal: Model the probability that Y belongs to a particular category

Ex.

$$\Pr(\text{default} = \text{yes} \mid \text{balance})$$

Let's just use linear regression!

JK that's a bad idea

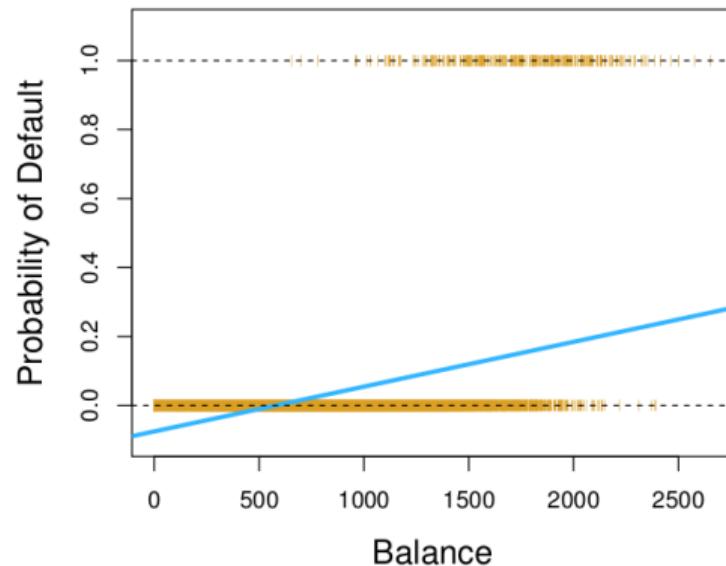
Ex.

Bad idea:

- Set Y to be a dummy variable taking values in $\{1, 2, 3, \dots\}$
- Run regression, and choose k based on what integer value \hat{y} is closest to

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

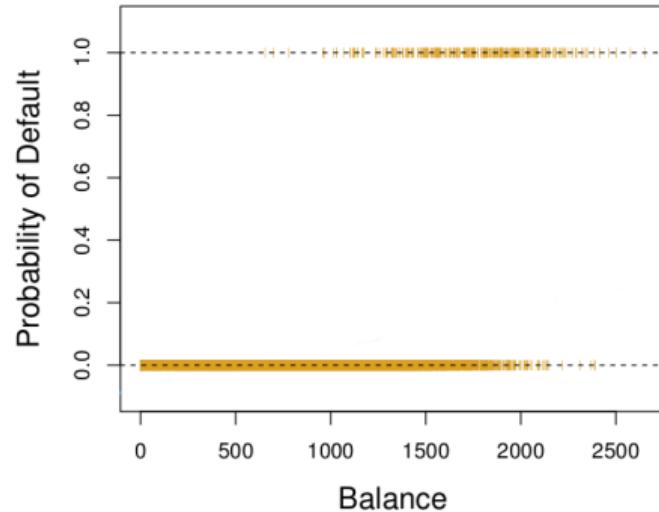
vs.


$$Y = \begin{cases} 1 & \text{if mild} \\ 2 & \text{if moderate} \\ 3 & \text{if severe} \end{cases}$$

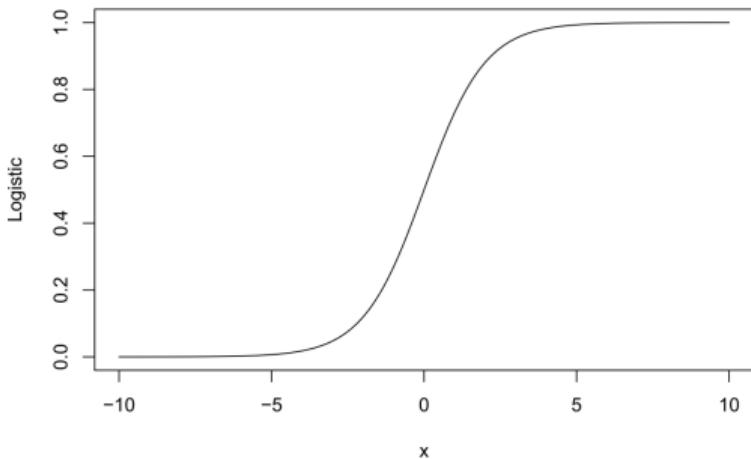
Bad idea is still not a great idea for two levels

$$p(\text{balance}) = \Pr(\text{default} = \text{yes} \mid \text{balance})$$

$$Y = \begin{cases} 0 & \text{if not default} \\ 1 & \text{if default} \end{cases}$$


- Fit linear regression
- Predict default if $\hat{y} > 0.5$; not default otherwise

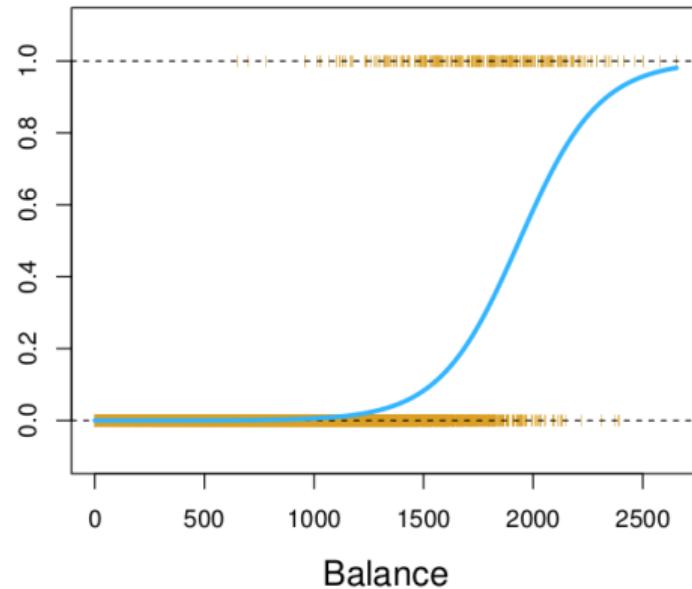
$$p(\text{balance}) = \beta_0 + \beta_1 \text{balance}$$


Approximating the probability

$$\Pr(\text{default} = \text{yes} \mid \text{balance})$$

Logistic function

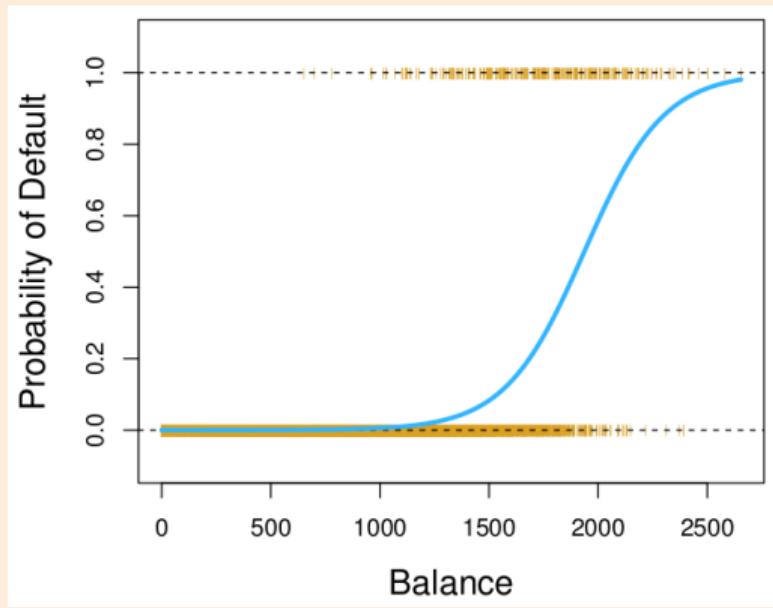
$$y = \frac{e^x}{1 + e^x}$$



$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Try it out:
desmos.com/calculator/cw1pyzzqci

Logistic Regression


$$\Pr(\text{default} = \text{yes} \mid \text{balance}) = \frac{e^{\beta_0 + \beta_1 \text{balance}}}{1 + e^{\beta_0 + \beta_1 \text{balance}}}$$

Linear Regression

Logistic Regression

What will the drawn logistic regression classifier predict for each of the following values of Balance

Balance	Prediction
0	0
500	0
1000	0
1500	0
2000	0
2500	0

Odds

$$\frac{p(x)}{1 - p(x)} = \frac{\Pr(Y = 1 \mid X = x)}{1 - \Pr(Y = 1 \mid X = x)} = \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = 0 \mid X = x)}$$

Examples:

- If the probability of default is 90% what are the odds?

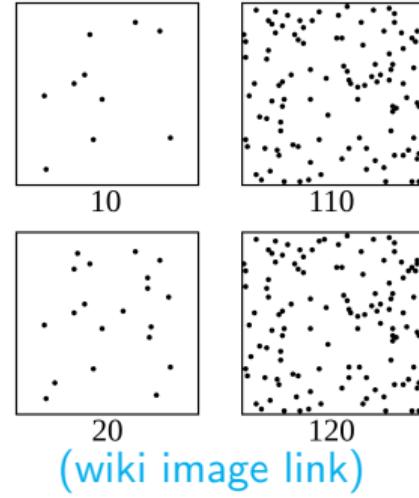
- ▶ $p(x) = 0.9$
- ▶ $\frac{0.9}{1-0.9} = 9$

- If the odds are 1/3, what is the probability of default?

- ▶ $\frac{p}{1-p} = 1/3$
- ▶ $3p = 1 - p$
- ▶ $4p = 1$
- ▶ $p = 1/4$

Probability
or risk $= \frac{p}{p+q}$

Odds $= p:q$


Making the nonlinear linear

Assume the (natural) log odds (logits) follow a linear model

$$\log \left(\frac{p(x)}{1 - p(x)} \right) = \beta_0 + \beta_1 x$$

Do some algebra and get $p(x)$:

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Playing with the logistic function: desmos.com/calculator/cw1pyzzqci

Using coefficients to make predictions

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	<0.0001
balance	0.0055	0.0002	24.9	<0.0001

What is the estimated probability of default for someone with a balance of \$1,000?

What is the estimated probability of default for someone with a balance of \$2,000:

Interpreting the coefficients

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$\log \left(\frac{p(x)}{1 - p(x)} \right) = \beta_0 + \beta_1 x$$

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	<0.0001
balance	0.0055	0.0002	24.9	<0.0001

Confusion Matrix: Predicting default from balance

		True default status		
		No	Yes	Total
Predicted default status	No	9644	252	9896
	Yes	23	81	104
Total		9667	333	10000

Predicted	True		Total
	Yes	No	
Yes	<i>a</i>	<i>b</i>	$a + b$
No	<i>c</i>	<i>d</i>	$c + d$
Total	$a + c$	$b + d$	N

Do coding in jupyter notebook

Next time

11	F	2/6	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #2 Due Mon 2/9	
	M	2/9	Project Day & Review			
	W	2/11	Midterm #1			
12	F	2/13	Class not held			
13	M	2/16	Leave one out and k-fold CV	5.1.1-3		
14	W	2/18	More k-fold CV	5.1.4-5		
15	F	2/20	k-fold CV for classification	5.1.5		
16	M	2/23	Subset selection	6.1		
17	W	2/25	Shrinkage: Ridge	6.2.1		
18	F	2/27	Shrinkage: Lasso	6.2.2	HW #3 Due Sun 3/1	
	M	3/2	Spring Break			
	W	3/4	Spring Break			
	F	3/6	Spring Break			
19	M	3/9	PCA	6.3		
20	W	3/11	PCR	6.3		

Q5

Q6