

Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression

Lecture 11 - CMSE 381

Michigan State University
:::
Dept of Computational Mathematics, Science & Engineering

Fri, Feb 6, 2026

Announcements

11	F	2/6	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #2 Due Mon 2/9	
	M	2/9	Project Day & Review			
	W	2/11	Midterm #1			
12	F	2/13	Class not held			
13	M	2/16	Leave one out and k-fold CV	5.1.1-3		
14	W	2/18	More k-fold CV	5.1.4-5		
15	F	2/20	k-fold CV for classification	5.1.5		
16	M	2/23	Subset selection	6.1		
17	W	2/25	Shrinkage: Ridge	6.2.1		
18	F	2/27	Shrinkage: Lasso	6.2.2	HW #3 Due Sun 3/1	
	M	3/2	Spring Break			
	W	3/4	Spring Break			
	F	3/6	Spring Break			
19	M	3/9	PCA	6.3		
20	W	3/11	PCR	6.3		

Announcements:

- Monday 2/9 - Project day
 - ▶ Will talk about the project
- Monday 2/9 - Review day
- Wednesday 2/11 - Exam #1
 - ▶ Bring 8.5x11 sheet of paper
 - ▶ **Handwritten** both sides
 - ▶ Anything you want on it, but must be your work
 - ▶ Must have your name and group number
 - ▶ You will turn it in
 - ▶ Calculator w/o internet

Covered in this lecture

Last Time:

- Logistic Regression

This time:

- Multiple Logistic Regression
- Multinomial Logistic Regression

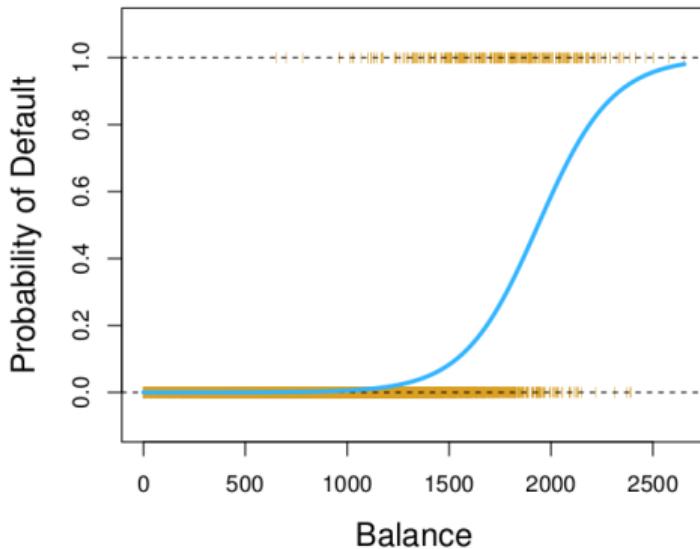
Section 1

Review of Logistic Regression from last time

Logistic regression

- Assume single input X
- Output takes values $Y \in \{\text{Yes, No}\}$

$$p(X) = \Pr(Y = \text{yes} \mid \text{balance})$$



$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log \left(\frac{p(x)}{1 - p(x)} \right) = \beta_0 + \beta_1 x$$

Solve for $p(x)$:

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Playing with the logistic function: desmos.com/calculator/cw1pyzzqci

Section 2

Multiple Logistic Regression

New assumption

$p \geq 1$ input variables

X_1, X_2, \dots, X_p

Y output variable has only two levels

Multiple Logistic Regression

Multiple features:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p}}$$

Equivalent to:

$$\log \left(\frac{p(X)}{1 - p(X)} \right) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$$

Example

	default	student	balance	income
0	No	No	729.526495	44361.625070
1	No	Yes	817.180407	12106.134700
2	No	No	1073.549164	31767.138950
3	No	No	529.250605	35704.493940
4	No	No	785.655883	38463.495880
5	No	Yes	919.588531	7491.558572
6	No	No	825.513331	24905.226580
7	No	Yes	808.667504	17600.451340
8	No	No	1161.057854	37468.529290
9	No	No	0.000000	29275.268290

Predict default from
balance, student, and income

Default data set

Section 3

Multinomial Logistic Regression

New assumption

$p \geq 1$ input variables

X_1, X_2, \dots, X_p

Y output variable has K levels

Remember dummy variables?

Slide from linear regression days

Region:

	x_{i1}	x_{i2}
South	1	0
West	0	1
East	0	0

Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i\text{th person from South} \\ 0 & \text{if } i\text{th person not from South} \end{cases}$$
$$x_{i2} = \begin{cases} 1 & \text{if } i\text{th person from West} \\ 0 & \text{if } i\text{th person not from West} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}$ for hospital visits based on some input(s) X

$$\Pr(Y = \text{stroke} \mid X = x) =$$

$$\Pr(Y = \text{overdose} \mid X = x) =$$

$$\Pr(Y = \text{seizure} \mid X = x) =$$

Multinomial Logistic Regression

Plan A

- Assume Y has K levels
- Make K (the last one) the baseline

$$\Pr(Y = k|X = x) = \frac{e^{\beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{lp}x_p}}$$

$$\Pr(Y = K|X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{lp}x_p}}.$$

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}$ for hospital visits based on X

$$\Pr(Y = \text{stroke} | X = x) = \frac{\exp(\beta_{\text{str},0} + \beta_{\text{str},1}x)}{1 + \exp(\beta_{\text{str},0} + \beta_{\text{str},1}x) + \exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x)}$$

$$\Pr(Y = \text{overdose} | X = x) = \frac{\exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x)}{1 + \exp(\beta_{\text{str},0} + \beta_{\text{str},1}x) + \exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x)}$$

$$\Pr(Y = \text{seizure} | X = x) = \frac{1}{1 + \exp(\beta_{\text{str},0} + \beta_{\text{str},1}x) + \exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x)}$$

Log odds

Calculated so that log odds between *any pair of* classes is linear.
Specifically, for $Y = k$ vs $Y = K$, we have

$$\log \left(\frac{\Pr(Y = k \mid X = x)}{\Pr(Y = K \mid X = x)} \right) = \beta_{k0} + \beta_{k1}x_1 + \cdots + \beta_{kp}x_p$$

$$\Pr(Y = k \mid X = x) = \frac{e^{\beta_{k0} + \beta_{k1}x_1 + \cdots + \beta_{kp}x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \cdots + \beta_{lp}x_p}}$$

$$\Pr(Y = K \mid X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \cdots + \beta_{lp}x_p}}.$$

Plan B: Softmax coding

Treat all levels symmetrically

$$\Pr(Y = k|X = x) = \frac{e^{\beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p}}{\sum_{l=1}^K e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{lp}x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log \left(\frac{\Pr(Y = k|X = x)}{\Pr(Y = k'|X = x)} \right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

Softmax example

$$\Pr(Y = \text{stroke} \mid X = x)$$

$$= \frac{\exp(\beta_{\text{str},0} + \beta_{\text{str},1}x)}{\exp(\beta_{\text{str},0} + \beta_{\text{str},1}x) + \exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x) + \exp(\beta_{\text{seiz},0} + \beta_{\text{seiz},1}x)}$$

$$\Pr(Y = \text{overdose} \mid X = x)$$

$$= \frac{\exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x)}{\exp(\beta_{\text{str},0} + \beta_{\text{str},1}x) + \exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x) + \exp(\beta_{\text{seiz},0} + \beta_{\text{seiz},1}x)}$$

$$\Pr(Y = \text{seizure} \mid X = x)$$

$$= \frac{\exp(\beta_{\text{seiz},0} + \beta_{\text{seiz},1}x)}{\exp(\beta_{\text{str},0} + \beta_{\text{str},1}x) + \exp(\beta_{\text{OD},0} + \beta_{\text{OD},1}x) + \exp(\beta_{\text{seiz},0} + \beta_{\text{seiz},1}x)}$$

Jupyter Notebook

Next time

11	F	2/6	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #2 Due Mon 2/9	
	M	2/9	Project Day & Review			
	W	2/11	Midterm #1			
12	F	2/13	Class not held			
13	M	2/16	Leave one out and k-fold CV	5.1.1-3		
14	W	2/18	More k-fold CV	5.1.4-5		
15	F	2/20	k-fold CV for classification	5.1.5		
16	M	2/23	Subset selection	6.1		
17	W	2/25	Shrinkage: Ridge	6.2.1		
18	F	2/27	Shrinkage: Lasso	6.2.2	HW #3 Due Sun 3/1	
	M	3/2	Spring Break			
	W	3/4	Spring Break			
	F	3/6	Spring Break			
19	M	3/9	PCA	6.3		
20	W	3/11	PCR	6.3		

Q5

Q6