Ch 8.1: Decision Trees Lecture 24 - CMSE 381

Prof. Mengsen Zhang

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Wed, Mar 26, 2025

1/25

Last time:

• Cubic Splines

This lecture:

• 8.1 Decision Trees

Announcements:

- HW #6 due tonight!
- HW #7 due Sun, 3/30
- Projects

	М	3/17	Midterm #2		Sun 3/16	
21	W	3/19	Polynomial & Step Functions	7.1-7.2		
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4		
23	М	3/24	Regression Splines	7.4		
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26	
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due	
26	М	3/31	Maximal Margin Classifier	9.1	Sun 3/30	
27	W	4/2	SVC	9.2		
28	F	4/4	SVM	9.3, 9.4	HW #8 Due	
29	М	4/7	Single Layer NN	10.1	Sun 4/6	
30	W	4/9	Multi Layer NN	10.2		
31	F	4/11	CNN	10.3		
32	М	4/14	Unsupervised learning / clustering	12.1, 12.4	Sun 4/13	
33	W	4/16	Virtual: Project Office Hours			
	F	4/18	Review			
	М	4/21	Midterm #3			
	W	4/23				
	F	4/25			Project Due	

2/25

Section 1

Decision Trees

Big idea

Image: https://marekbennett.com/2014/02/14/decision-tree/

Subset of Hitters data

	Hits	Years	Salary	LogSalary
1	81	14	475.0	6.163315
2	130	3	480.0	6.173786
3	141	11	500.0	6.214608
4	87	2	91.5	4.516339
5	169	11	750.0	6.620073
317	127	5	700.0	6.551080
318	136	12	875.0	6.774224
319	126	6	385.0	5.953243
320	144	8	960.0	6.866933
321	170	11	1000.0	6.907755

First decision tree example

_

	Hits	Years	LogSalary
1	81	14	6.163315
2	130	3	6.173786
3	141	11	6.214608
4	87	2	4.516339
5	169	11	6.620073
317	127	5	6.551080
318	136	12	6.774224
319	126	6	5.953243
320	144	8	6.866933
321	170	11	6.907755

Interpretation of example

Coding a regression decision tree

Regions defined by the tree

Viewing Regions Defined by Tree

How do we actually get the tree? Two steps

- We divide the predictor space that is, the set of possible values for X₁, X₂, ..., X_p into J distinct and non-overlapping regions, R₁, R₂, ..., R_J.
- For every observation that falls into the region R_j, we make the same prediction = the mean of the response values for the training observations in R_j.

Goal: Find boxes R_1, \dots, R_J that minimize

$$\sum_{j=1}^J \sum_{i\in R_j} (y_i - \hat{y}_{R_j})^2$$

 $\hat{y}_{R_j} =$ mean response for training observations in *j*th box

Recursive Binary Splitting

One split:

- Pick X_j and cutpoint s
- so that splitting into {X | X_j < s} and {X | X_j ≥ s} results in largest possible reduction in RSS

$$R_1(j,s) = \{X \mid X_j < s\} \\ R_2(j,s) = \{X \mid X_j \ge s\}$$

$$\sum_{i \mid x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i \mid x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Rinse and repeat

Pruning

Result of pruning

Section 2

Classification Decision Tree

Basic idea

• $\hat{p}_{mk} =$ proportion of training observations in R_m from the kth class

•
$$E = 1 - \max_k(\hat{p}_{mk})$$

Example

Pruning the example

More coding!

Linear models vs trees

 $\mathsf{Pros}/\mathsf{Cons}$

Pros:

TL;DR

- Split into regions by greedily decreasing RSS
- Prune tree by using cost complexity
- Not robust Next time, figure out how to aggregate trees

5.11

<u>Years < 4.5</u> <u>Hits < 117.5</u> <u>Hits < 117.5</u> <u>Hits < 117.5</u> <u>17.5</u> <u>17.5</u>

Next time

	М	3/17	Midterm #2		Sun 3/16
21	W	3/19	Polynomial & Step Functions	7.1-7.2	
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	Μ	3/24	Regression Splines	7.4	
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 3/30
26	М	3/31	Maximal Margin Classifier	9.1	
27	W	4/2	SVC	9.2	
28	F	4/4	SVM	9.3, 9.4	HW #8 Due Sun 4/6
29	М	4/7	Single Layer NN	10.1	
30	W	4/9	Multi Layer NN	10.2	
31	F	4/11	CNN	10.3	HW #9 Due Sun 4/13
32	М	4/14	Unsupervised learning / clustering	12.1, 12.4	
33	W	4/16	Virtual: Project Office Hours		
	F	4/18	Review		
	М	4/21	Midterm #3		
	W	4/23			
	F	4/25			Project Due