Ch 4.3 - Logistic Regression

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Wed, Feb 5, 2025

Announcements

CMSE381_S2025_Schedule : Sheet1

Lec #		Date	Topic	Reading	HW	
1	M	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning	2.1		
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	М	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due	
6	М	1/27	Multi-linear Regression	3.2	Sun 1/26	
7	W	1/29	Probably More Linear Regression	3.3		
8	F	1/31	Last of the Linear Regression		HW #2 Due	
9	М	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 2/1	
10	W	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9	
	М	2/10	Project Day & Review			
	W	2/12	Midterm #1			
12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	М	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		
15	F	2/21	k-fold CV for classification	5.1.5	HW #4 Due	
16	M	2/24	Subset selection	6.1	Sun 2/23	

Announcements:

- Homework #3 Due Sunday on Crowdmark
- Monday Review day
 - Nothing prepped
 - Send your questions (survey)
 - Bring your questions
- Wednesday Exam #1
 - ▶ Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - ► You will turn it in
 - ► Caculator okay w/o internet

Covered in this lecture

Last Time:

- Classification basics
- Bayes classifier
- KNN classifier

This time:

Logistic Regression

Section 1

Review from last time

Error rate

- Training data: $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

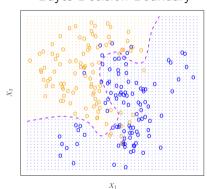
Training error rate:

$$\frac{1}{n}\sum_{i=1}^n\mathrm{I}(y_i\neq\hat{y}_i$$

Test error rate:

$$\operatorname{Ave}(\mathrm{I}(y_0\neq\hat{y}_0))$$

Best ever classifier


We can't have nice things

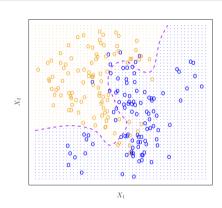
Bayes Classifier:

Give every observation the highest probability class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

Bayes Decision Boundary

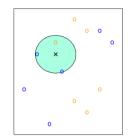
Dr. Zhang (MSU-CMSE)

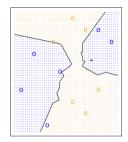

Bayes error rate

• Error at $X = x_0$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

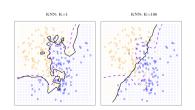
Overall Bayes error:


$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$

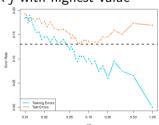


7 / 25

Zhang (MSU-CMSE) Wed, Feb 5, 2025

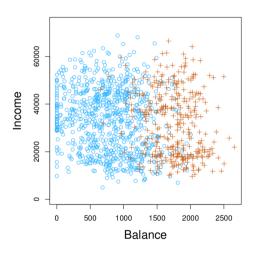

K-Nearest Neighbors

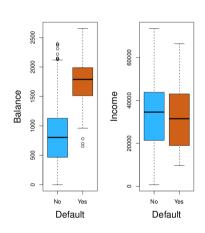
$$K = 3$$


decision boundary

- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

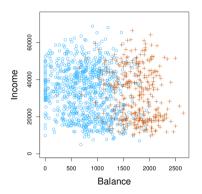
$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$


• Pick *j* with highest value

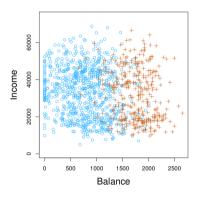


Section 2

Logistic Regression


Simulated Default data set

What is classification


- Classification: When the response variable is qualitative
- Goal: Model the probability that Y belongs to a particular category

11/25

r. Zhang (MSU-CMSE) Wed, Feb 5, 2025

Goal for Balance data set

Goal: Model the probability that Y belongs to a particular category Ex. $Pr(\texttt{default} = \texttt{yes} \mid \texttt{balance})$

Let's just use linear regression!

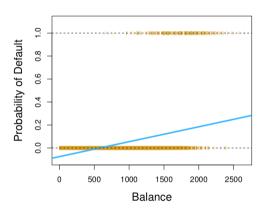
JK that's a bad idea

Bad idea:

- Set Y to be a dummy variable taking values in $\{1, 2, 3, \dots\}$
- Run regression, and choose k based on what integer value \hat{y} is closest to

Ex.

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

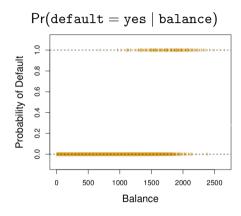

VS.

$$Y = \begin{cases} 1 & \text{if mild} \\ 2 & \text{if moderate} \\ 3 & \text{if severe} \end{cases}$$

Bad idea is still not a great idea for two levels

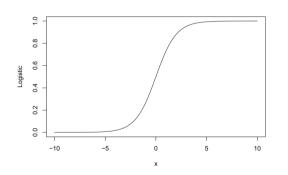
$$p(exttt{balance}) = exttt{Pr(default} = exttt{yes} \mid exttt{balance})$$
 $Y = egin{cases} 0 & ext{if not default} \ 1 & ext{if default} \end{cases}$

- Fit linear regression
- Predict default if $\hat{y} > 0.5$; not default otherwise



$$p(balance) = \beta_0 + \beta_1 balance$$

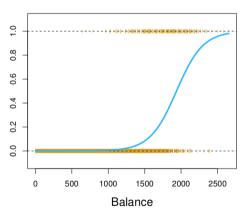
14 / 25


Dr. Zhang (MSU-CMSE) Wed, Feb 5, 2025

Approximating the probability

Logistic function

$$y = \frac{e^x}{1 + e^x}$$


$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Try it out:

desmos.com/calculator/cw1pyzzqci

Logistic Regression

$$\mathsf{Pr}(\mathsf{default} = \mathsf{yes} \mid \mathsf{balance}) = rac{e^{eta_0 + eta_1 \mathsf{balance}}}{1 + e^{eta_0 + eta_1 \mathsf{balance}}}$$



Linear Regression

Logistic Regression

. Zhang (MSU-CMSE)

What will the drawn logistic regression classifer predict for each of the following values of Balance

Balance	Prediction
0	
500	
1000	
1500	
2000	
2500	

Odds

$$\frac{p(x)}{1 - p(x)} = \frac{\Pr(Y = 1 \mid X = x)}{1 - \Pr(Y = 1 \mid X = x)} = \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = 0 \mid X = x)}$$

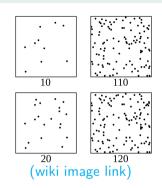
Probability
$$=\frac{p}{p+q} \left(\frac{p}{p} \right) / \left(\frac{p}{p} \right) q$$

Odds =
$$p:q$$
 $p:q$

Examples:

- If the probability of default is 90% what are the odds?

 - p(x) = 0.9 $\frac{0.9}{1-0.9} = 9$
- If the odds are 1/3, what is the probability of default?
 - $\frac{p}{1-p} = 1/3$
 - ▶ 3p' = 1 p
 - 4p = 1
 - p = 1/4


Making the nonlinear linear

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Do some algebra and get p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

20 / 25

Playing with the logistic function: desmos.com/calculator/cw1pyzzgci

Or. Zhang (MSU-CMSE) Wed, Feb 5, 2025

Using coefficients to make predictions

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is the estimated probability of default for someone with a balance of \$1,000?

What is the estimated probability of default for someone with a balance of \$2,000:

r. Zhang (MSU-CMSE) Wed, Feb 5, 2025

Interpreting the coefficients

$$p(x)=rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

22 / 25

Zhang (MSU-CMSE) Wed, Feb 5, 2025

Confusion Matrix: Predicting default from balance

		True default status		
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	23	81	104
	Total	9667	333	10000

		True		
		Yes	No	
Predicted	Yes	a	b	
riedicted	No	c	d	
	Total	a+c	b+d	

Total a+b c+d

Do coding in jupyter notebook

r. Zhang (MSU-CMSE) Wed, Feb 5, 2025

Next time

CMSE381 S2025 Schedule : Sheet1

Lec #		Date	Topic	Reading	HW	
1	M	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning	2.1		
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	M	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due	
6	M	1/27	Multi-linear Regression	3.2	Sun 1/26	
7	W	1/29	Probably More Linear Regression	3.3		
8	F	1/31	Last of the Linear Regression		HW #2 Due	
9	М	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 2/1	
10	W	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9	
	M	2/10	Project Day & Review			
	W	2/12	Midterm #1			
12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	M	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		
15	F	2/21	k-fold CV for classification	5.1.5	HW #4 Due	
16	М	2/24	Subset selection	6.1	Sun 2/23	

Or. Zhang (MSU-CMSE) Wed, Feb 5, 2025