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Announcements

Last time:

@ 8.1 Decision Trees - regression

This lecture:

8.1 Decision Trees - classification

8.2.1 Bagging
8.2.2 Random forest

Announcements:

@ Homework 7 Due Sunday
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Midterm #2
Polynomial & Step Functions ~ 7.1-7.2
Step Functions; Basis

functions; Start Splines 7274
Regression Splines 74
Decision Trees 81
Random Forests 8.21,822
Maximal Margin Classifier 91
svC 92
SVM 93,94
Single Layer NN 10.1
Multi Layer NN 10.2
CNN 10.3
Unsupervised leaming /15 1 15 4
clustering
Virtual: Project Office Hours
Review
Midterm #3

Sun 3/16

HW #6 Due
Wed 3/26

HW #7 Due
Sun 3/30

HW #8 Due
Sun 4/6

HW #9 Due
Sun 4/13

Project Due
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Section 1

Classification Decision Tree
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Basic idea

Th’illiﬂ
@ Pmi = proportion of training
observations in R, from the kth class
Ca<405 Ca 405
r—‘ o £ =1—maxk(Pmk)
MaxHR|< 161.5 Chestifain:bc Yes ves
Vol
No Yes
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Example

Th?\l:a
Ca 0.5 Ca405
Slopgi< 1.5 Oldpegk < 1.1
MaxHR|< 161.5 ChestRainoc AQSF 52 Thll:b
| | I ChestPain:a | I Yes
RestBR < 157 Yes No No Yes Yes
No Chol k 244 Sex £ 0.5

No No No Yes
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Pruning the example
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Tree Size
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Coding!

Second part of day 24's jupyter notebook.
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Linear models vs trees
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Pros/Cons

Pros: Cons:
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TL;DR

@ Split into regions by greedily
decreasing RSS (or error
rate)

@ Prune tree by using cost
complexity

@ Not robust - Next, figure
out how to aggregate trees
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Section 2

8.2.1 Bagging
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The bootstrap

Want to do (but can’t):
Build separate models from independent
training sets, and average resulting
predictions:
o f1(x),---,FB(x) for B separate
training sets

@ Return the average

Dr. Zhang (MSU-CMSE)

Boostrap modification:

@ Work with fixed data set

@ Take B samples from this data set
(with replacement)

@ Train method on bth sample to get
f*b(X)

@ Return average of predictions
(regression)

f bag

Mm

b:

or majority vote (classification)
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Tree version
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Prediction on new data point
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Example: Heart classification data
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Out of Bag Error Estimation

@ On average, bootstrap sample uses
about 2/3 of the data

@ Remaining observations not used are
called out-of-bag (OOB) observations

@ For each observation, run through all
the trees where it wasn't used for T
building

@ Return the average (or majority vote)
of those as test prediction
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Error
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Section 3

Random Forests
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The idea

@ Goal is to decorrelate the bagged
trees:

> If there is a strong predictor, the
first split of most trees will be the
same

» Most or all trees will be highly
correlated

» Averaging highly correlated
quantities doesn't decrease variance
as much as uncorrelated

Dr. Zhang (MSU-CMSE)

@ The

>

v

v

v

random forest fix:

Each time a split is considered, only
use a random subset of m the
predictors

Fresh sample taken every time
Typically m~ \/p

On average, (p — m)/p of splits
won't consider strong predictor

m = p gives back bagging

Fri, Mar 28, 2025

19/23



Example on gene expression
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Coding time!
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TL:DR

o Bagging: trees grown independently
on random samples. Trees tend to be
similar to each other, can result in
getting caught in local optima

@ Random forest: trees independently
on samples, but split is done using
random subset of features
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Next time
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Midterm #2
Polynomial & Step Functions 71-72
Step Functions; Basis

functions; Start Splines 1274
Regression Splines 74
Decision Trees 81
Random Forests 821,822
Maximal Margin Classifier 91
SVC 9.2
SVM 93,94
Single Layer NN 10.1
Multi Layer NN 102
CNN 103
Unsuperwsedr\eamingf 121,124
clustering
Virtual: Project Office Hours
Review
Midterm #3

Sun 3/16

HW #6 Due
Wed 3/26

HW #7 Due
Sun 3/30

HW #8 Due
Sun 4/6

HW #9 Due
Sun 4/13

Project Due

Q of the day:

You have two very different datasets to
create two very different models.

You have to use random forest on one and
bagging on the other.

Which one would benefit more from
random forest? what criteria would you
use for the making the decision?
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