# Ch 10.3: Convolutional Neural Nets

Lecture 31 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Fri, April 11, 2025

#### Announcements

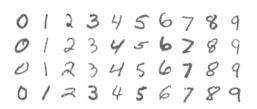
#### Last time:

- Multilayer NN
- pyTorch

#### This lecture:

CNNs

#### Final countdown:


- HW #9 is due Sunday 4/13
- Exam 3 is 4/21
- Project is due 4/25

|    | M | 3/17 | Midterm #2                                     |              | Sun 3/16              |
|----|---|------|------------------------------------------------|--------------|-----------------------|
| 21 | W | 3/19 | Polynomial & Step Functions                    | 7.1-7.2      |                       |
| 22 | F | 3/21 | Step Functions; Basis functions; Start Splines | 7.2-7.4      |                       |
| 23 | M | 3/24 | Regression Splines                             | 7.4          |                       |
| 24 | W | 3/26 | Decision Trees                                 | 8.1          | HW #6 Due<br>Wed 3/26 |
| 25 | F | 3/28 | Random Forests                                 | 8.2.1, 8.2.2 | HW #7 Due             |
| 26 | M | 3/31 | Maximal Margin Classifier                      | 9.1          | Sun 3/30              |
| 27 | W | 4/2  | SVC                                            | 9.2          |                       |
| 28 | F | 4/4  | SVM                                            | 9.3, 9.4     | HW #8 Due             |
| 29 | M | 4/7  | Single Layer NN                                | 10.1         | Sun 4/6               |
| 30 | W | 4/9  | Multi Layer NN                                 | 10.2         |                       |
| 31 | F | 4/11 | CNN                                            | 10.3         | HW #9 Due             |
| 32 | М | 4/14 | Unsupervised learning / clustering             | 12.1, 12.4   | Sun 4/13              |
| 33 | W | 4/16 | Virtual: Project Office Hours                  |              |                       |
|    | F | 4/18 | Review                                         |              |                       |
|    | M | 4/21 | Midterm #3                                     |              |                       |
|    | W | 4/23 |                                                |              |                       |
|    | F | 4/25 |                                                |              | Project Due           |

### Section 1

Last time: Neural Nets

### **MNIST**

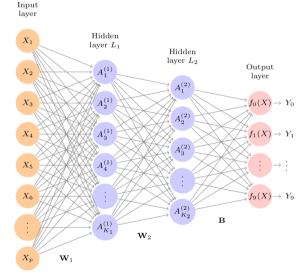


3





- Goal: Build a model to classify images into their correct digit class
- Each image has  $p = 28 \cdot 28 = 784$  pixels
- Each pixel is grayscale value in [0,255]
- Data converted into column order
- Output represented by one-hot vector  $Y = (Y_0, Y_1, \dots, Y_9)$
- 60K training images, 10K test images


### Neural network architecture for MNIST

- Two hidden layers.
- Softmax for classification output
- We used L<sub>1</sub> has 128 units; L<sub>2</sub> has 64
- 10 output variables due to class labeling
- Result is we are training approx 110K weights

Test your understanding: PollEv

## MNIST learning





0.2 0.4 0.6 0.8 1.0

0

Class Probability

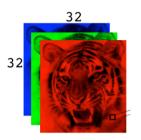
### Section 2

### Convolutional Neural Network

r. Zhang (MSU-CMSE) Fri, April 11, 2025

## Last time: Flattening the image

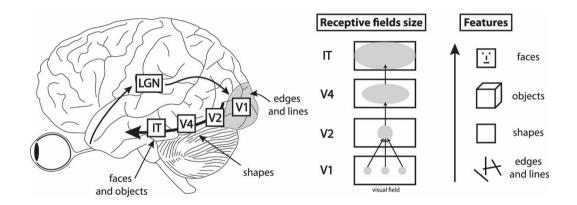
$$\begin{pmatrix} 1 & 1 & 0 \\ 4 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 1 \\ 0 \\ 4 \\ 2 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$


### Example data set: CIFAR100 Data



- 60,000 images: 50K training, 10K test
- Labels with 20 super classes (e.g. aquatic mammals)
- 5 classes per super class (beaver, dolphin, otter, seal, whale)
- Images are 32x32

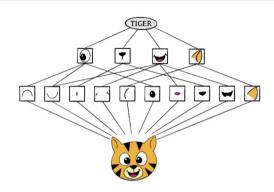
Dr. Zhang (MSU-CMSE) Fri, April 11, 2025


# Image channel data



10 / 23

Dr. Zhang (MSU-CMSE) Fri, April 11, 2025


## How does your brain do it? The visual hierarchy



Mauro Manassi, Bilge Sayim, Michael H. Herzog; When crowding of crowding leads to uncrowding. Journal of Vision 2013;13(13):10. https://doi.org/10.1167/13.13.10.

Or. Zhang (MSU-CMSE) Fri, April 11, 2025

### **CNNs**



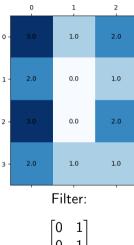
12 / 23

Pr. Zhang (MSU-CMSE) Fri, April 11, 2025

### Convolution layer

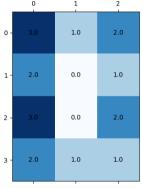
#### Convolution Filter

#### Original Image:


#### Convolution filter:

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$

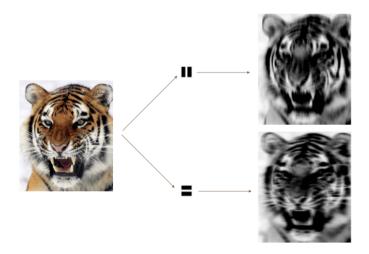
#### Convolved Image


$$\begin{bmatrix} a\alpha + b\beta + d\gamma + e\delta & b\alpha + c\beta + e\gamma + f\delta \\ d\alpha + e\beta + g\gamma + h\delta & e\alpha + f\beta + h\gamma + i\delta \\ g\alpha + h\beta + j\gamma + k\delta & h\alpha + i\beta + k\gamma + l\delta \end{bmatrix}$$

## Convolution Filter Example

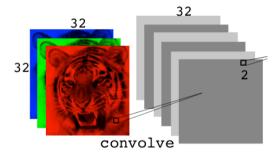


## Same example, different filter


### What is the convolved image?



Filter:


$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

## Convolution filter: Bigger example

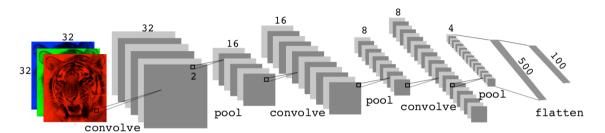


r. Zhang (MSU-CMSE) Fri, April 11, 2025

## Convolution layer



r. Zhang (MSU-CMSE) Fri, April 11, 2025


### More notes on convolution

Dr. Zhang (MSU-CMSE) Fri, April 11, 2025

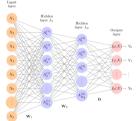
## Pooling layers

Max pool 
$$\begin{bmatrix} 1 & 2 & 5 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 1 & 3 & 4 \\ 1 & 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

### Putting it together to make a CNN



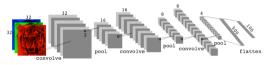
https://poloclub.github.io/cnn-explainer/


Dr. Zhang (MSU-CMSE) Fri, April 11, 2025

# Coding

Dr. Zhang (MSU-CMSE) Fri, April

## TL;DR


#### Feed Forward Neural Net



$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

- Combines input data using learned weights
- Linear combo of those to get output
- Sometimes softmax to get probability of classification

#### **CNN**



- Specialized NN
- Gets next layer via
  - Convolution layer
  - Pooling Layer
  - Fully connected layer

### Next time

|    | М | 3/17 | Midterm #2                                     |              | Sun 3/16              |
|----|---|------|------------------------------------------------|--------------|-----------------------|
| 21 | W | 3/19 | Polynomial & Step Functions                    | 7.1-7.2      |                       |
| 22 | F | 3/21 | Step Functions; Basis functions; Start Splines | 7.2-7.4      |                       |
| 23 | M | 3/24 | Regression Splines                             | 7.4          |                       |
| 24 | W | 3/26 | Decision Trees                                 | 8.1          | HW #6 Due<br>Wed 3/26 |
| 25 | F | 3/28 | Random Forests                                 | 8.2.1, 8.2.2 | HW #7 Due<br>Sun 3/30 |
| 26 | M | 3/31 | Maximal Margin Classifier                      | 9.1          |                       |
| 27 | W | 4/2  | SVC                                            | 9.2          |                       |
| 28 | F | 4/4  | SVM                                            | 9.3, 9.4     | HW #8 Due<br>Sun 4/6  |
| 29 | M | 4/7  | Single Layer NN                                | 10.1         |                       |
| 30 | W | 4/9  | Multi Layer NN                                 | 10.2         |                       |
| 31 | F | 4/11 | CNN                                            | 10.3         | HW #9 Due<br>Sun 4/13 |
| 32 | М | 4/14 | Unsupervised learning / clustering             | 12.1, 12.4   |                       |
| 33 | W | 4/16 | Virtual: Project Office Hours                  |              |                       |
|    | F | 4/18 | Review                                         |              |                       |
|    | M | 4/21 | Midterm #3                                     |              |                       |
|    | W | 4/23 |                                                |              |                       |
|    | F | 4/25 |                                                |              | Project Due           |

Q of the Day: which layer(s) in CNN are more similar in dimension as its previous layer?

Dr. Zhang (MSU-CMSE) Fri, April 11, 2025