Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression Lecture 11 - CMSE 381

Prof. Mengsen Zhang

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Fri, Feb 7, 2025

Announcements

CMS	E381	_\$2025	5_Schedule : Sheet1			
Lec #	Date		Торіс	Reading	нพ	
1	М	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning	2.1		
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	М	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due	
6	М	1/27	Multi-linear Regression	3.2	Sun 1/26	
7	W	1/29	Probably More Linear Regression	3.3		
8	F	1/31	Last of the Linear Regression		HW #2 Due Sun 2/1	
9	М	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	W	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9	
	М	2/10	Project Day & Review			
	W	2/12	Midterm #1			
12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	М	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		
15	F	2/21	k-fold CV for classification	5.1.5	HW #4 Due	
16	М	2/24	Subset selection	6.1	Sun 2/23	

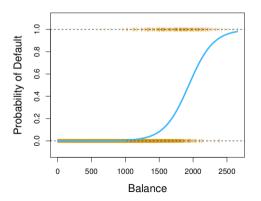
Announcements:

- Monday Project day
 - Will talk about the project
- Monday Review day
 - Send me your questions (esp. technical ones)
 - Bring your questions
- Wednesday Exam #1
 - Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - Non-internet calculator if you want it

Last Time:

• Logistic Regression

This time:


- Multiple Logistic Regression
- Multinomial Logistic Regression

Section 1

Review of Logistic Regression from last time

Logistic regression

- Assume single input X
- Output takes values $Y \in \{Yes, No\}$

$$p(X) = \mathsf{Pr}(Y = \mathsf{yes} \mid \mathsf{balance})$$

$$p(\mathtt{x}) = rac{e^{eta_0+eta_1\mathtt{x}}}{1+e^{eta_0+eta_1\mathtt{x}}}$$

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x): $p(x) = rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}}$

Playing with the logistic function: desmos.com/calculator/cw1pyzzqci

Dr. Zhang (MSU-CMSE)

Section 2

Multiple Logistic Regression

 $p \geq 1$ input variables

Y output variable has only two levels

$$X_1, X_2, \cdots, X_p$$

Multiple features:

$$p(X) = rac{e^{eta_0+eta_1X_1+\dots+eta_
ho X_
ho}}{1+e^{eta_0+eta_1X_1+\dots+eta_
ho X_
ho}}$$

Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Example

	default	student	balance	income
0	No	No	729.526495	44361.625070
1	No	Yes	817.180407	12106.134700
2	No	No	1073.549164	31767.138950
3	No	No	529.250605	35704.493940
4	No	No	785.655883	38463.495880
5	No	Yes	919.588531	7491.558572
6	No	No	825.513331	24905.226580
7	No	Yes	808.667504	17600.451340
8	No	No	1161.057854	37468.529290
9	No	No	0.000000	29275.268290

Predict default from balance, student, and income

Default data set

Section 3

Multinomial Logistic Regression

 $p \geq 1$ input variables

Y output variable has K levels

$$X_1, X_2, \cdots, X_p$$

Remember dummy variables?

Slide from linear regression days

Region.			Create spare dummy variables:	
				te spare dummy variables.
South	1	0	$x_{i1} = \begin{cases} 1 \\ 0 \end{cases}$	if <i>i</i> th person from South if <i>i</i> th person not from South
West	0	1	-	
South West East	0	0	$x_{i2} = \begin{cases} 1 \\ 0 \end{cases}$	if <i>i</i> th person from West if <i>i</i> th person not from West

Region:

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$

Example

Predict $Y \in \{\texttt{stroke}, \texttt{overdose}, \texttt{seizure}\}$ for hospital visits based on some input(s) X

$$\Pr(Y = \texttt{stroke} \mid X = x) =$$

$$\Pr(Y = \texttt{overdose} \mid X = x) =$$

$$\Pr(Y = \texttt{seizure} \mid X = x) =$$

Multinomial Logistic Regression Plan A

- Assume Y has K levels
- Make *K* (the last one) the baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Predict $Y \in \{\texttt{stroke, overdose, seizure}\}$ for hospital visits based on Xp

$$\begin{aligned} & \Pr(Y = \texttt{stroke} \mid X = x) = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ & \Pr(Y = \texttt{overdose} \mid X = x) = \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ & \Pr(Y = \texttt{seizure} \mid X = x) = \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \end{aligned}$$

Log odds

Calculated so that log odds between *any pair of* classes is linear. Specifically, for Y = k vs Y = K, we have

$$\log\left(\frac{\Pr(Y=k\mid X=x)}{\Pr(Y=K\mid X=x)}\right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{k_p}x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{l_p}x_p}}$$
$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{l_p}x_p}}.$$

Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{k_p} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{l_p} x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

Softmax example

$$\Pr(Y = \texttt{stroke} \mid X = x) \\ = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}$$

$$\begin{aligned} \Pr(Y = \texttt{overdose} \mid X = x) \\ = \frac{\exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{aligned}$$

$$\Pr(Y = \texttt{seizure} \mid X = x) \\ = \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}$$

Jupyter Notebook

Next time

Lec #	Date		Торіс	Reading	нพ	
1	М	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning 2.1			
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	М	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due Sun 1/26	
6	М	1/27	Multi-linear Regression	3.2		
7	W	1/29	Probably More Linear Regression	3.3		
8	F	1/31	Last of the Linear Regression		1 INA #0 D	
9	м	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3	HW #2 Due Sun 2/1	
10	W	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9	
	М	2/10	Project Day & Review			
	W	2/12	Midterm #1			
12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	М	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		
15	F	2/21	k-fold CV for classification	5.1.5	HW #4 Due Sun 2/23	
16	М	2/24	Subset selection	6.1		