Ch 12.1, 12.4: Unsupervised Learning & Clustering Lecture 32 - CMSE 381

Prof. Mengsen Zhang

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Mon, April 14, 2025

Announcements

Last time:

• Convolutional Neural Nets

This lecture:

• Clustering (Just hierarchical clustering)

Announcements:

- No more homework!
- Weds: Project office hours, zoom only (link on website), send a message on slack!
- Fri 4/18: Review submit your questions here!
- Monday 4/21: Exam 3
 - Content since 2nd Exam (Ch 7 and on)
 - One page (8.5×11) handwritten cheat sheet
 - no-internet Calculator

	М	3/17	Midterm #2		Sun 3/16
21	W	3/19	Polynomial & Step Functions	7.1-7.2	
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	M	3/24	Regression Splines	7.4	
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due
26	М	3/31	Maximal Margin Classifier	9.1	Sun 3/30
27	W	4/2	SVC	9.2	
28	F	4/4	SVM	9.3, 9.4	HW #8 Due
29	М	4/7	Single Layer NN	10.1	Sun 4/6
30	W	4/9	Multi Layer NN	10.2	
31	F	4/11	CNN	10.3	HW #9 Due
32	М	4/14	Unsupervised learning / clustering	12.1, 12.4	Sun 4/13
33	W	4/16	Virtual: Project Office Hours		
	F	4/18	Review		
	М	4/21	Midterm #3		
	W	4/23			
	F	4/25			Project Due

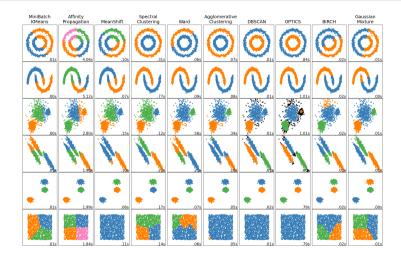
Section 1

Unsupervised learning

Supervised vs Unsupervised Learning

Supervised

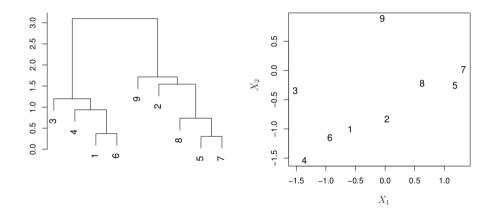
Unsupervised

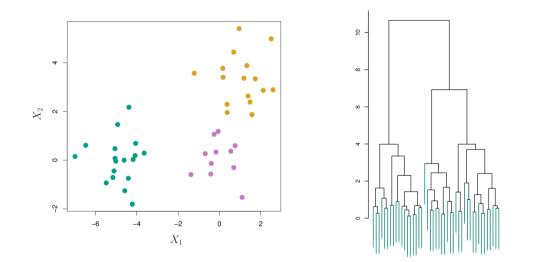

Some examples of unsupervised problems

- Assay gene expression levels in 100 patients with breast cancer, looking for subgroups with similar qualities
- Online shopping: find groups of shoppers with similar browsing and purchase histories and show relevant related products.
- Search engine picking results to show

Section 2

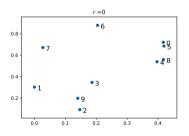
Clustering

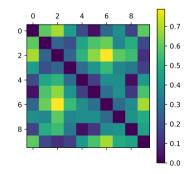

Clustering: relation between samples


Section 3

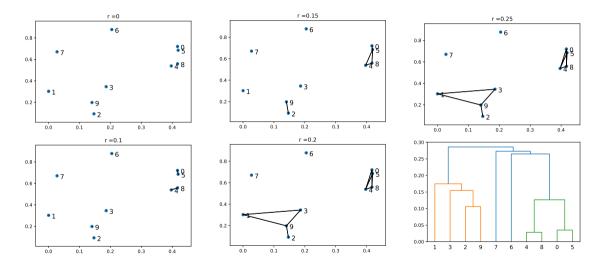
Hierarchical Clustering

Dendrogram

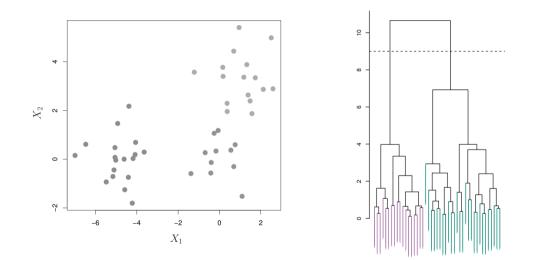

A bigger example

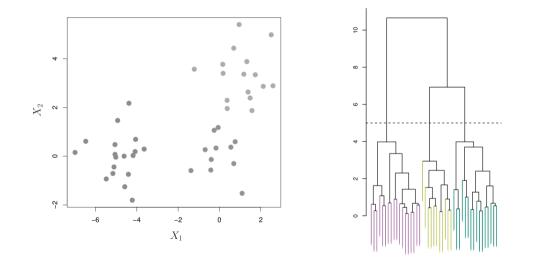


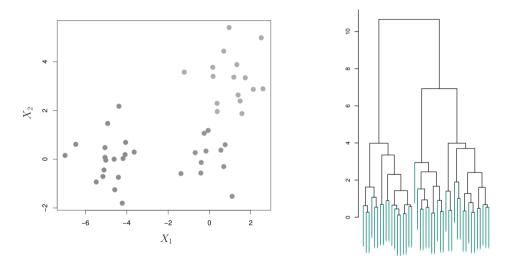
Single linkage


Distance between cluster *A* and cluster *B*: Smallest distance between the points

$$L(A,B) = \min_{a \in A, b \in B} \|a - b\|$$




Building the dendrogram


How to get clusters

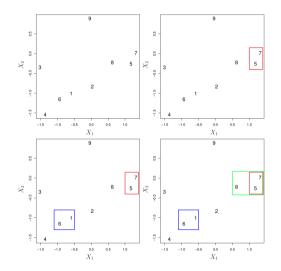
How to get different clusters

Can get any number of clusters

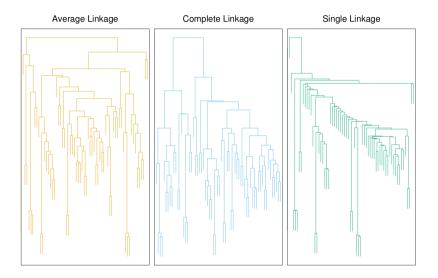
Test your understanding: PollEv

Dr. Zhang (MSU-CMSE)

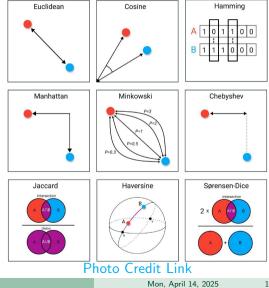
Linkage


Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dis- similarities between the observations in cluster A and the observations in cluster B, and record the <i>largest</i> of these dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dis- similarities between the observations in cluster A and the observations in cluster B, and record the <i>smallest</i> of these dissimilarities. Single linkage can result in extended, trailing clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all pairwise dis- similarities between the observations in cluster A and the observations in cluster B, and record the <i>average</i> of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable <i>inversions</i> .

Example with complete linkage



Distance between cluster *A* and cluster *B*: Largest distance between the points


$$L(A,B) = \max_{a \in A, b \in B} \|a - b\|$$

Examples of different linkage

Dependence on dissimilarity measure

Coding

Next time

	М	3/17	Midterm #2		Sun 3/16
21	W	3/19	Polynomial & Step Functions	7.1-7.2	
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	М	3/24	Regression Splines	7.4	
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 3/30
26	М	3/31	Maximal Margin Classifier	9.1	
27	W	4/2	SVC	9.2	
28	F	4/4	SVM	9.3, 9.4	HW #8 Due Sun 4/6
29	М	4/7	Single Layer NN	10.1	
30	W	4/9	Multi Layer NN	10.2	
31	F	4/11	CNN	10.3	LINA HO Due
32	М	4/14	Unsupervised learning / clustering	12.1, 12.4	HW #9 Due Sun 4/13
33	W	4/16	Virtual: Project Office Hours		
	F	4/18	Review		
	М	4/21	Midterm #3		
	W	4/23			
	F	4/25			Project Due