Ch 6.2: Shrinkage - Ridge regression
Lecture 17 - CMSE 381

Prof. Lianzhang Bao

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds, Feb 26, 2025

Dr. Bao (MSU-CMSE) Lec 17 Weds, Feb 26, 2025

1/18



Announcements

12 [l 2n4 Leave one out CV 5.1.1,6.1.2
Last time: 13 M| 217 k-fold CV 5.1.3
W 2 More k-fold CV 5.1.4-5 Qs
; 15 BN 221 kfoldCVforclassificaion 515
o
SUbset SeleCtlon 1B M 2124 Subset selection 6.1
Th. . 17 W 2/26 Shrinkage: Ridge 6.2.1
1S t|me- 18 - 228 Shrinkage: Lasso 6.2.2 HW #4 Due
. . M 33 Spring Break Sun 3/2
o Ridge regression w s Spring Break
L Spring Break
Announcements: 15 EMY a0 PCA 83
20 W a2 PCR 63 a6
- 314 Review HW #5 Due
e HW #4 due Sunday 3/2 o o2 e

Lec 17 Weds, Feb 26, 2025 2/18



Section 1

Last time
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Subset selection

Algorithm 6.2 Forward stepwise selection

1. Let Mg denote the null model, which contains no predictors.
2. Fork=0,...,p—1:

(a) Consider all p — k models that augment the predictors in M,
with one additional predictor.

Algorithm 6.1 Best subset selection

(b) Choose the best among these p — k models, and call it M.

1. Let My denote the null model, which contains no predictors. This Here best is defined as having smallest RSS or highest R2.

model simply predicts the sample mean for each observation.
3. Select a single best model from among My,..., M, using cross-

2. Fork=12,...p: validated prediction error, C, (AIC), BIC, or adjusted R2.

(a) Fit all (f) models that contain exactly k& predictors.

Algorithm 6.3 Backward stepwise selection

(b) Pick the best among these (f) models, and call it M. Here best

is defined as having the smallest RSS, or equivalently largest K2 1. Let M, denote the full model, which contains all p predictors.
s as smalles R 2 y larges .

2. Fork=pp—1,...,1

w

. Select a single best model from among My,..., M, using cross-
validated prediction error, G, (AIC), BIC, or adjusted R*. (a) Consider all £ models that contain all but one of the predictors
in My, for a total of k — 1 predictors.

(b) Choose the best among these k models, and call it Mj,_;. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among Moy,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R%.

Lec 17 Weds, Feb 26, 2025 4/18



Section 2

Ridge Regression
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Goal

o Fit model using all p predictors

@ Aim to constrain (regularize)

coefficient estimates
Y = o+ B1X1 + B2 Xo + B3X3 + BaXa

@ Shrink the coefficient estimates
towards 0
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Ridge regression
Before: After:
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Example from the Credit data
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Same Setting, Different Plot
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Scale equivavariance (or lack thereof)

Scale equivariant: Multiplying a variable
by ¢ (cX;) just returns a coefficient
multiplied by 1/c (1/cp;)
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Solution: Standardize predictors

Xij =
\/ Zl 1 X’J Xj)
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Using Cross-Validation to find A

@ Choose a grid of X\ values

e Compute the (k-fold) cross-validation
error for each value of A

@ Select the tuning parameter value A
for which the CV error is smallest.

@ The model is re-fit using all of the
available observations and the
selected value of the tuning
parameter.
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LOOCV choice

Dr. Bao

of A\ for ridge regression
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Coding
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Bias-Variance tradeoff
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Squared bias (black), variance (green), and test
mean squared error (purple) for simulated data.
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More Bias-Variance Tradeoff
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Squared bias (black), variance (green), and test
mean squared error (purple) for simulated data.
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Advantages of Ridge

Ridge vs. Least Squares: Ridge vs. Subset Selection:
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