Ch 3.1: Linear Regression

Prof. Mengsen

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Wed Jan 22, 2025

Announcements

Last time:

• 2.2 Assessing Model Accuracy

Covered in this lecture

- Least squares coefficient estimates for linear regression
- Residual sum of squares (RSS)

Or. Zhang (MSU-CMSE) Wed Jan 22, 2025

Section 1

Simple Linear Regression

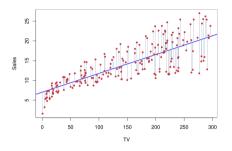
Setup

 Predict Y on a single predictor variable X

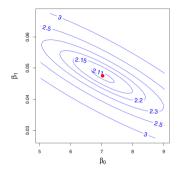
$$Y \approx \beta_0 + \beta_1 X$$

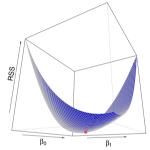
• "≈" "is approximately modeled as"

Dr. Zhang (MSU-CMSE)


Example

1		TV	Radio	Newspaper	Sales
2		230.1	37.8	69.2	22.1
3	2	44.5	39.3	45.1	10.4
4	3	17.2	45.9	69.3	9.3
5	4	151.5	41.3	58.5	18.5
6	5	180.8	10.8	58.4	12.9
7	6	8.7	48.9	75	7.2
8		57.5	32.8	23.5	11.8
9	8	120.2	19.6	11.6	13.2
10	9	8.6	2.1		4.8
11	10	199.8	2.6	21.2	10.6
12	11	66.1	5.8	24.2	8.6


Or. Zhang (MSU-CMSE) Wed Jan 22, 2025


Least squares criterion: Setup

How do we estimate the coefficients?

Least squares criterion: RSS

Residual sum of squares RSS is

$$RSS = e_1^2 + \dots + e_n^2 = \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

8/11

sales
$$\approx \beta_0 + \beta_1 TV$$

Least squares criterion

Find β_0 and β_1 that minimize the RSS.

r. Zhang (MSU-CMSE) Wed Jan 22, 2025

Least squares coefficient estimates

$$\min_{\beta_0,\beta_1} \sum_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{\beta}_0} = -2\sum_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \hat{\beta}_1} = -2\sum_i x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Coding group work

r. Zhang (MSU-CMSE) Wed Jan 22, 2025

Next time

Next time:

- More on simple linear regression!
- Evaluation of model etc.

CMSE381_S2025_Schedule : Sheet1

Lec #	Date		Topic	Reading	HW	
1	M	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning	2.1		
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	М	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due	
6 M 1/27		1/27	Multi-linear Regression	3.2	Sun 1/26	
			Drobably Mara Linear			

Announcements

- Homework 1
 - ▶ Due Sun, Jan 26