Ch 2.2.3: Intro to classification

Lecture 9 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Mon, Feb 3, 2025

Announcements

CMSE381 S2025 Schedule: Sheet1

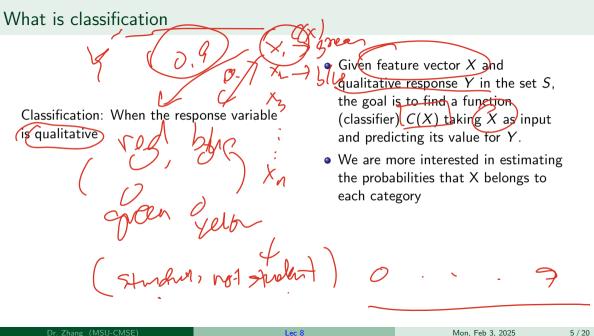
Lec #		Date	Topic	Reading	HW	
1	M	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning	2.1		
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	M	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due	
6	M	1/27	Multi-linear Regression	3.2	Sun 1/26	
7	W	1/29	Probably More Linear Regression	3.3		
8	F	1/31	Last of the Linear Regression		HW #2 Due	
9	М	2/35	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 2/1	
10	W	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	F	2/2	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9	
	M	2/10	Project Day & Review			
	W	2/12	Midterm #1			
12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	M	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		
15	F	2/21	k-fold CV for classification	5.1.5	HW #4 Due Sun 2/23	
16	М	2/24	Subset selection	6.1		

Last Time:

• Finished Linear Regression

Announcements:

- Homework #3 Due Sunday Feb 9
- Next Monday Review day
 - Nothing prepped
 - Bring your questions
- \bullet Wed 2/12 Exam #1
 - Bring 8 5x11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in


Covered in this lecture

- Ch 2.2.3
- Error rate (classification)
- Bayes Classifier
- K-NN classification

Section 1

Classification Overview

4 / 20

Some examples

- Predict whether a COVID19 vaccine will work on a patient given patient's
- An online banking service wants to determine whether a transaction being performed is fraudulent on the basis of the user's IP address, past transactions, etc.

(Sound, not franch)

Section 2

Ch 2.2.3: Classification

7 / 20

Error rate

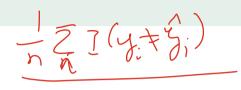
• Training data:

Outcome

 $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with y_i) qualitative

- Estimate $\hat{y} \neq \hat{f}(x)$
- Indicator variable

Training error rate:


$$\frac{1}{n}\sum_{i=1}^{n}\mathrm{I}(y_{i}\neq\hat{y}_{i})$$

Test error rate:

$$Ave(I(y_0 \neq \hat{y}_0))$$

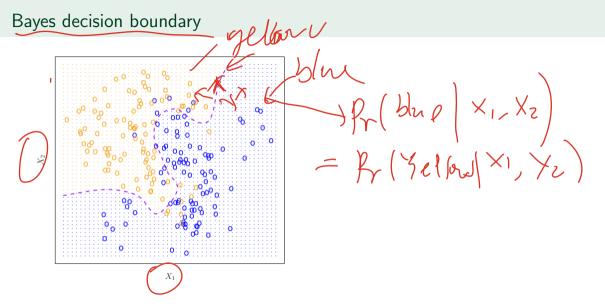
Best ever classifier

We can't have nice things

Bayes Classifier:

Give every observation the highest probability class given its predictor variables

$$Pr(Y = j \mid X = x_0)$$
Condistant Prob


highest Pr

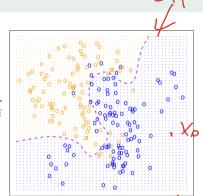
An example

(pass, Suil)

- Survey students for amount of programming experience, and current GPA
- Try to predict if they will pass CMSE 381.
- If we have a survey of all students that could ever exist, we can determine the probability of failure given combo of those features

P, (pags | STT 380) > 0.5 70.9

11/20


Bayes error rate

Error at
$$X = x_0$$

$$\frac{1 - \max_{j} \Pr(Y = j \mid X = x_0)}{1 - \max_{j} \Pr(Y = j \mid X = x_0)} = 0.02$$

Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$

Pr (dax | X2) = 0.98 Pr (yohu) X)

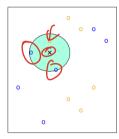
The game

> Prohe)=0.6

- drællerge: don-1 km

Grow: guess Bayes ->

-Proble 1X1, X2) Pr(Kellow / X1/ke)


Dr. Zhang (MSU-CMSE)

Section 3

K-Nearest Neighbors Classifier

Pr(Elne / 1/2)
Pr(Yellow x1, x2...)

K-Nearest Neighbors



- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

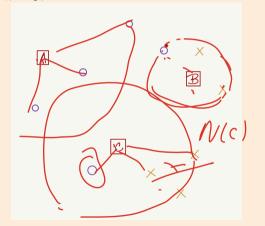
$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \left(\sum_{i \in N(x_0)} I(y_i = j) \right)$$

K = 3

Pick j with highest value

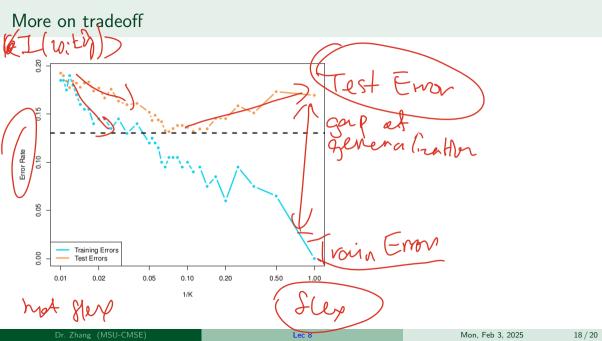
Black line: KNN decision boundary

$$\Rightarrow Pr(X = |x) = \frac{2}{3}$$


$$Pr(X = |x| | x) = \frac{1}{3}$$

$$Pr(X = |x| | x) = \frac{1}{3}$$

Example


K-NN

Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?

	k=1	k = 3
Point	Prediction	k = 3 Prediction
Α	0	0
В	×	X
С	0	X

Jupyter notebook

Next time

CMSE381 S2025 Schedule : Sheet1

CWSE361_32023_3Criedule : Srieet1									
Lec #	Date		Topic	Reading	HW				
1	M	1/13	Intro / Python Review	1					
2	W	1/15	What is statistical learning	2.1					
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2					
	M	1/20	MLK - No Class						
4	W	1/22	Linear Regression	3.1					
5	F	1/24	More Linear Regression	3.1	HW #1 Due Sun 1/26				
6	M	1/27	Multi-linear Regression	3.2					
7	W	1/29	Probably More Linear Regression	3.3					
8	F	1/31	Last of the Linear Regression		HW #2 Due Sun 2/1				
9	М	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3					
10	W	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3					
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9				
	M	2/10	Project Day & Review						
	W	2/12	Midterm #1						
12	F	2/14	Leave one out CV	5.1.1, 5.1.2					
13	M	2/17	k-fold CV	5.1.3					
14	W	2/19	More k-fold CV	5.1.4-5					
15	F	2/21	k-fold CV for classification	5.1.5	HW #4 Due Sun 2/23				
16	М	2/24	Subset selection	6.1					