Ch 3.3: The Last of the Linear Regression Lecture 8 - CMSE 381

Prof. Lianzhang Bao

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Fri, Jan 31, 2025

Last time:

Started 3.3 Questions of linear regression

Announcements:

- HW#2 Due Sunday 2/1
- HW #3 Due Sunday 2/9

- Extending the linear model with interaction terms
- Hierarchy principle
- Polynomial regression

3/21

Section 1

Review from last time

4/21

Linear Regression with Multiple Variables

• Predict Y on a multiple variables X

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p x_p + \varepsilon$$

- Find good guesses for $\hat{\beta}_0$, $\hat{\beta}_1, \cdots$.
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \dots + \hat{\beta}_p x_p$

- $e_i = y_i \hat{y}_i$ is the *i*th residual • RSS = $\sum_i e_i^2$
- RSS is minimized at *least* squares coefficient estimates

Section 2

Categorical Input Variables

Credit card balance

- own: house ownership
- student: student status
- status: marital status
- region: East, West, or South

Create a new variable

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$\begin{split} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i\text{th person is student} \\ \beta_0 + \varepsilon_i & \text{if } i\text{th person isn't} \end{cases} \end{split}$$

8/21

Who cares about 0/1?

Old version: 0/1

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$\begin{split} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i \text{th person is student} \\ \beta_0 + \varepsilon_i & \text{if } i \text{th person isn't} \end{cases} \end{split}$$

Alternative version: ± 1

 $x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ -1 & \text{if } i \text{th person is not a student} \end{cases}$

Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

=
$$\begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if ith person is student} \\ \beta_0 - \beta_1 + \varepsilon_i & \text{if ith person isn't} \end{cases}$$

Qualitiative Predictor with More than Two Levels

	x _{i1} x _{i2}	Create spare dummy variables:
South		$x_{i1} = \begin{cases} 1 & \text{if } i\text{th person from South} \\ 0 & \text{if } i\text{th person pet from South} \end{cases}$
West		$\begin{pmatrix} 0 & \text{if } i \text{th person hot from South} \\ \begin{pmatrix} 1 & \text{if } i \text{th person from West} \end{pmatrix}$
East		$x_{i2} = \begin{cases} 1 & \text{if ith person not from West} \\ 0 & \text{if } i\text{th person not from West} \end{cases}$
	$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}$ $= \begin{cases} \beta_{0} + \beta_{1} + \varepsilon_{i} \\ \beta_{0} + \beta_{2} + \varepsilon_{i} \\ \beta_{0} + \varepsilon_{i} \end{cases}$	$_{2}x_{i2} + \varepsilon_{i}$ if <i>i</i> th person from South if <i>i</i> th person from West if <i>i</i> th person from East

More on multiple levels

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
region[South]	-18.69	65.02	-0.287	0.7740
region[West]	-12.50	56.68	-0.221	0.8260

Do code section on "Dummy Variables for Multi-level Categorical Inputs"

Section 3

Extending the linear model

Assumptions so far

Back to our Advertising data set

$$\hat{Y}_{sales} = \beta_0 + \beta_1 \cdot X_{TV} + \beta_2 \cdot X_{radio} + \beta_3 \cdot X_{newspaper}$$

Assumed (implicitly) that the effect on sales by increasing one medium is independent of the others.

What if spending money on radio advertising increases the effectiveness of TV advertising? How do we model it?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

$$\begin{aligned} Y_{\text{sales}} &= \beta_0 + \beta_1 X_{TV} + \beta_2 X_{\text{radio}} + \beta_3 X_{\text{radio}} X_{TV} + \varepsilon \\ &= \beta_0 + (\beta_1 + \beta_3 X_{\text{radio}}) X_{TV} + \beta_2 X_{\text{radio}} + \varepsilon \\ &= \beta_0 + \tilde{\beta}_1 X_{TV} + \beta_2 X_{\text{radio}} + \varepsilon \end{aligned}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
$TV \times radio$	0.0011	0.000	20.73	< 0.0001

$$\begin{aligned} Y_{\text{sales}} &= \beta_0 + \beta_1 X_{TV} + \beta_2 X_{\text{radio}} + \beta_3 X_{\text{radio}} X_{TV} + \varepsilon \\ &= \beta_0 + (\beta_1 + \beta_3 X_{\text{radio}}) X_{TV} + \beta_2 X_{\text{radio}} + \varepsilon \end{aligned}$$

Interpretation

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
$TV \times radio$	0.0011	0.000	20.73	< 0.0001

Sometimes *p*-value for interaction term is very small, but associated main effects are not.

The hierarchy principle:

Nonlinear relationships

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \varepsilon$$

 $horsepower^2$

0.0012

10.1

< 0.0001

0.0001

Do the section on "Interaction Terms"

Next time

- Mon 2/3
 - Intro to classification, Bayes classifier, KNN classifier

Lec #	Date		Торіс	Reading	нพ	Pop Quizzes	Notes
1	м	1/13	Intro / Python Review	1			
2	w	1/15	What is statistical learning	2.1		Q1	
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2			
	М	1/20	MLK - No Class				
4	w	1/22	Linear Regression	3.1		Q2	
5	F	1/24	More Linear Regression	3.1	HW #1 Due		
6	М	1/27	Multi-linear Regression	3.2	Sun 1/26		
7	w	1/29	Probably More Linear Regression	3.3		Q3	
8	F	1/31	Last of the Linear Regression		HW #2 Due		
9	м	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 2/1	Q4	
10	w	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3			
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9		
	М	2/10	Project Day & Review				
	w	2/12	Midterm #1				

Announcements

- Homework 2
 - Due Sun, Feb 1
- Homework 3
 - ► Due Sun, Feb 9