Ch 2.2.3: Intro to classification Lecture 9 - CMSE 381

Prof. Lianzhang Bao

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Mon, Feb 3, 2025

Lec #	Date		Торіс	Reading	нพ	Pop Quizzes	Notes
1	м	1/13	Intro / Python Review	1			
2	w	1/15	What is statistical learning	2.1		Q1	
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2			
	М	1/20	MLK - No Class				
4	w	1/22	Linear Regression	3.1		Q2	
5	F	1/24	More Linear Regression	3.1	HW #1 Due		
6	М	1/27	Multi-linear Regression	3.2	Sun 1/26		
7	w	1/29	Probably More Linear Regression	3.3		Q3	
8	F	1/31	Last of the Linear Regression		HW #2 Due		
9	м	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 2/1		
10	w	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3		Q4	
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9		
	м	2/10	Project Day & Review				
	w	2/12	Midterm #1				

Last Time:

• Finished Linear Regression

Announcements:

- Homework #3 Due Sunday Feb 9
- Next Monday Review day
 - Nothing prepped
 - Bring your questions
- Wednesday 2/12 Exam #1
 - Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in

- Ch 2.2.3
- Error rate (classification)
- Bayes Classifier
- K-NN classification

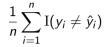
Section 1

Classification Overview

Classification: When the response variable is qualitative

- Given feature vector X and qualitative response Y in the set S, the goal is to find a function (classifier) C(X) taking X as input and predicting its value for Y.
- We are more interested in estimating the probabilities that X belongs to each category

- Predict whether a COVID19 vaccine will work on a patient given patient's age
- An online banking service wants to determine whether a transaction being performed is fraudulent on the basis of the user's IP address, past transactions, etc.


Section 2

Ch 2.2.3: Classification

Error rate

Training error rate:

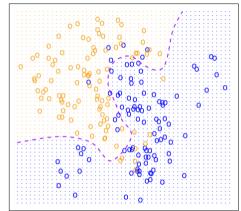
- Training data:
 - $\{(x_1, y_1), \cdots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

Test error rate:

 $\operatorname{Ave}(\operatorname{I}(y_0\neq \hat{y}_0))$

Best ever classifier

We can't have nice things


Bayes Classifier:

Give every observation the highest probability class given its predictor variables

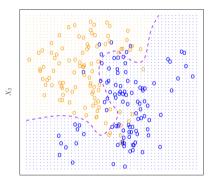
 $\Pr(Y = j \mid X = x_0)$

- Survey students for amount of programming experience, and current GPA
- Try to predict if they will pass CMSE 381.
- If we have a survey of all students that could ever exist, we can determine the probability of failure given combo of those features.

Bayes decision boundary

 X_1

Dr. Bao (MSU-CMSE)

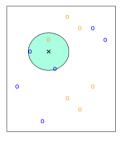

Bayes error rate

• Error at
$$X = x_0$$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

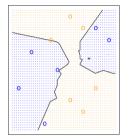
• Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$


 X_1

The game

Section 3


K-Nearest Neighbors Classifier

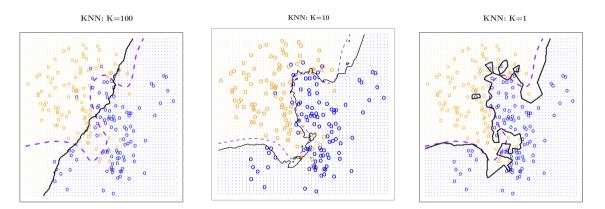
K-Nearest Neighbors

- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

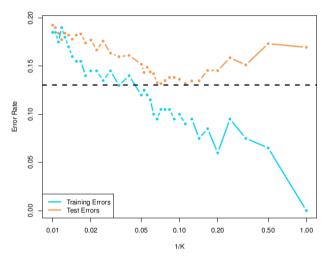
$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}(x_0)} I(y_i = j)$$

• Pick *j* with highest value

Black line: KNN decision boundary


Example

Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?



	k=1	k = 3
Point	Prediction	Prediction
A		
В		
С		

Tradeoff

More on tradeoff

Jupyter notebook

Next time

- Weds 2/5
 - Logistic Regression

Lec #	C	ate	Торіс	Reading	нพ	Pop Quizzes	Notes
1	м	1/13	Intro / Python Review	1			
2	W	1/15	What is statistical learning	2.1		Q1	
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2			
	М	1/20	MLK - No Class				
4	W	1/22	Linear Regression	3.1		Q2	
5	F	1/24	More Linear Regression	3.1	HW #1 Due		
6	М	1/27	Multi-linear Regression	3.2	Sun 1/26	Q3	
7	w	1/29	Probably More Linear Regression	3.3			
8	F	1/31	Last of the Linear Regression		HW #2 Due		
9	м	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 2/1	Q4	
10	w	2/5	Logistic Regression	4.1, 4.2, 4.3.1-3			
11	F	2/7	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 2/9		
	М	2/10	Project Day & Review				
	W	2/12	Midterm #1				

Announcements

- Homework 3
 - ► Due Sun, Feb 9