Ch 10.3: Convolutional Neural Nets Lecture 31 - CMSE 381

Prof. Lianzhang Bao

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Fri, Apr 11, 2025

Announcements

Last time:

- Multilayer NN
- øyTorch

This lecture:

CNNs

Announcements:

- Project due Friday
- HW #9 is posted
- Exam 3 is Apr 21
- Project is due Apr 25

21	w	3/19	Polynomial & Step Functions	7.1-7.2		
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4		
23	м	3/24	Regression Splines	7.4		
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26	Q7
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due	
26	м	3/31	Maximal Margin Classifier	9.1	Sun 3/30	
27	W	4/2	SVC	9.2	HW #8 Due Sun 4/6 HW #9 Due Sun 4/13	Q8 Q9 Q10
28	F	4/4	SVM	9.3, 9.4		
29	м	4/7	Single Layer NN	10.1		
30	W	4/9	Multi Layer NN	10.2		
31	F	4/11	CNN	10.3		
32	м	4/14	Unsupervised learning / clustering	12.1, 12.4		
33	W	4/16	Virtual: Project Office Hours			
	F	4/18	Review			
	м	4/21	Midterm #3			
	w	4/23				
	F	4/25			Project Due	
			No final ayam			
			ito inidi exam			

Section 1

Last time: Neural Nets

MNIST

0123456789 0123456789 0123456789 0123456789

- Goal: Build a model to classify images into their correct digit class
- Each image has $p = 28 \cdot 28 = 784$ pixels
- Each pixel is grayscale value in [0,255]
- Data converted into column order
- Output represented by one-hot vector $Y = (Y_0, Y_1, \cdots, Y_9)$
- 60K training images, 10K test images

Neural network architecture for MNIST

- Two hidden layers.
- Softmax for classification output
- We used L_1 has 128 units; L_2 has 64
- 10 output variables due to class labeling
- Result is we are training approx 110K weights

MNIST learning

Section 2

Convolutional Neural Network

Last time: Flattening the image

$$\begin{pmatrix} 1 & 1 & 0 \\ 4 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 1 \\ 0 \\ 4 \\ 2 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

Example data set: CIFAR100 Data

- 60,000 images: 50K training, 10K test
- Labels with 20 super classes (e.g. aquatic mammals)
- 5 classes per super class (beaver, dolphin, otter, seal, whale)
- Images are 32x32

Image channel data

 CNNs

Convolution layer

Convolution Filter

Original Image:

Convolution filter:

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$

Convolved Image

$\left[a\alpha + b\beta + d\gamma + e\delta\right]$	$b\alpha + c\beta + e\gamma + f\delta$
$d\alpha + e\beta + g\gamma + h\delta$	$e\alpha + f\beta + h\gamma + i\delta$
$\left\lfloor g\alpha + h\beta + j\gamma + k\delta \right\rfloor$	$h\alpha + i\beta + k\gamma + l\delta$

Convolution Filter Example

Same example, different filter

What is the convolved image?

 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Dr. Bao (MSU-CMSE)

Convolution filter: Bigger example

Convolution layer

More notes on convolution

Pooling layers

$$\operatorname{Max \ pool} \begin{bmatrix} 1 & 2 & 5 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 1 & 3 & 4 \\ 1 & 1 & 2 & 0 \end{bmatrix} \to \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

Putting it together to make a CNN

https://poloclub.github.io/cnn-explainer/

19/22

Coding

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

- Combines input data using learned weights
- Linear combo of those to get output
- Sometimes softmax to get probability of classification

- Specialized NN
- Gets next layer via
 - Convolution layer
 - Pooling Layer
 - Fully connected layer

Next time

21	W	3/19	Polynomial & Step Functions	7.1-7.2			
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4			
23	м	3/24	Regression Splines	7.4			
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26	Q7	
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due		
26	м	3/31	Maximal Margin Classifier	9.1	Sun 3/30		
27	W	4/2	SVC	9.2		Q8	
28	F	4/4	SVM	9.3, 9.4	HW #8 Due		
29	м	4/7	Single Layer NN	10.1	Sun 4/6		
30	W	4/9	Multi Layer NN	10.2		Q9	
31	F	4/11	CNN	10.3	HW/ #0 Due		
32	м	4/14	Unsupervised learning / clustering	12.1, 12.4	Sun 4/13		
33	W	4/16	Virtual: Project Office Hours			Q10	
	F	4/18	Review				
	м	4/21	Midterm #3				
	W	4/23					
	F	4/25			Project Due		
			No final exam				