Ch 10.1: Neural Nets

Lecture 29 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, April 7, 2025

Announcements

Last time:

SVM

This lecture:

Feed Forward Neural Nets

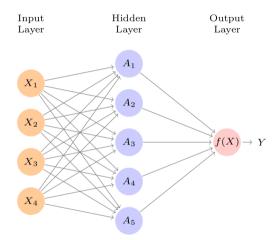
Announcements:

- Homework #9 due Sunday, April 13
- detailed project content rubrics
- No class wednesday 4/16. Virtual office hours.

	M	3/17	Midterm #2		Sun 3/16
21	W	3/19	Polynomial & Step Functions	7.1-7.2	
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	M	3/24	Regression Splines	7.4	
24	W	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due
26	M	3/31	Maximal Margin Classifier	9.1	Sun 3/30
27	W	4/2	SVC	9.2	
28	F	4/4	SVM	9.3, 9.4	HW #8 Due
29	M	4/7	Single Layer NN	10.1	Sun 4/6
30	W	4/9	Multi Layer NN	10.2	
31	F	4/11	CNN	10.3	HW #9 Due
32	М	4/14	Unsupervised learning / clustering	12.1, 12.4	Sun 4/13
33	W	4/16	Virtual: Project Office Hours		
	F	4/18	Review		
	M	4/21	Midterm #3		
	W	4/23			
	F	4/25			Project Due

2/18

r. Zhang (MSU-CMSE) Mon, April 7, 2025


Section 1

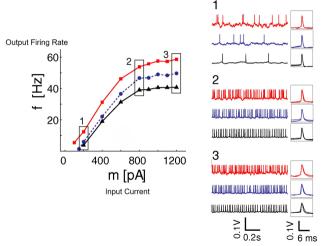
Neural Nets

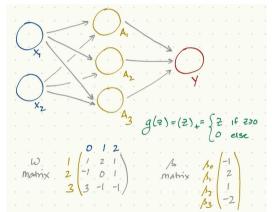
7. Zhang (MSU-CMSE) Mon, April 7, 2025

The idea

Feed Forward Neural Network: The cartoon

What is activation? Neuroscience 101.

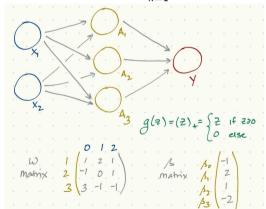



Figure adapted from Fig 1 of Arsiero et al. 2007 (J of Neurosci.)

Dr. Zhang (MSU-CMSE) Mon, April 7, 2025

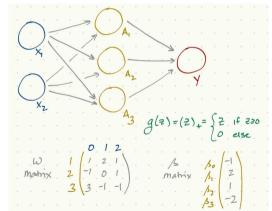
A very simple example

Computing A_k for (1,0)


$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

A very simple example

Computing Y for (1,0)


$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

A very simple example

Computing Y for (0,1)

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj} X_j), \qquad f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

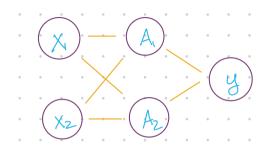
A different example

- Draw the diagram for a neural net with input data points with p = 3 (i.e., (X_1, X_2, X_3)) and two units in the hidden layer.
- Using the ω and β matrices, what is the output predicted Y for the point (2,0,1)?

$$\omega = \begin{pmatrix} 1 & 0 & -2 & 2 \\ -3 & 1 & 0 & -1 \end{pmatrix} \qquad \beta = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

Use the activation function

$$g(z) = (z)_+ =$$

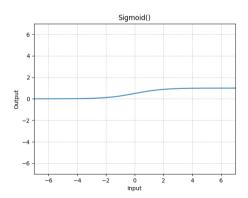

$$\begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

Dr. Zhang (MSU-CMSE)

Extra space

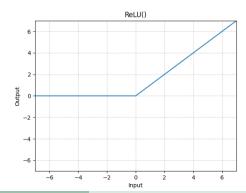
Or. Zhang (MSU-CMSE) Mon, April 7, 2025

What if there's no activation function?

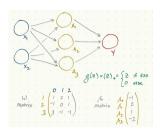


$$\omega = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad \beta = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

Choices for activation function

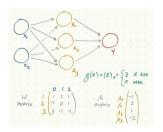

Sigmoid:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$



ReLU: Rectified linear unit

$$g(z) = (z)_+ = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$


Matrix version: First layer

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

$$A = g(\mathbf{W} \cdot \mathbf{X})$$
 $\mathbf{X}^T = (1 \ X_1 \ X_2 \ \cdots \ X_p)$

Matrix version: Output

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

$$Y = \beta \cdot \mathbf{A}$$
 $\mathbf{A}^T = (1 \ A_1 \ A_2 \ \cdots \ A_K)$

Now what?

Choose parameters by minimizing RSS, $\sum_{i=1}^{n} (y_i - f(x_i))^2$

Chosen in advance:

Tuned by the model:

Dr. Zhang (MSU-CMSE)

Coding

Pr. Zhang (MSU-CMSE) Mon, April 7, 2025

Next time

	M	3/17	Midterm #2		Sun 3/16
21	W	3/19	Polynomial & Step Functions	7.1-7.2	
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	M	3/24	Regression Splines	7.4	
24	W	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 3/30
26	M	3/31	Maximal Margin Classifier	9.1	
27	W	4/2	SVC	9.2	
28	F	4/4	SVM	9.3, 9.4	HW #8 Due Sun 4/6
29	M	4/7	Single Layer NN	10.1	
30	W	4/9	Multi Layer NN	10.2	
31	F	4/11	CNN	10.3	HW #9 Due Sun 4/13
32	М	4/14	Unsupervised learning / clustering	12.1, 12.4	
33	W	4/16	Virtual: Project Office Hours		
	F	4/18	Review		
	M	4/21	Midterm #3		
	W	4/23			
	F	4/25			Project Due

Q of the Day:

What is the relationship between Neural Network and Logistic regression?

Dr. Zhang (MSU-CMSE)

Mon, April 7, 2025