Ch 8.2.1, 8.2.2: Bagging and Random Forests Lecture 25 - CMSE 381

Prof. Lianzhang Bao

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Fri, Mar 28, 2025

Last time:

• 8.1 Decision Trees

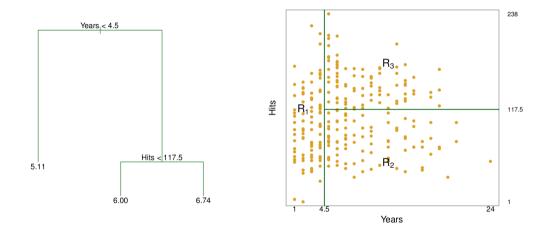
This lecture:

- 8.2.1 Bagging
- 8.2.2 Random forest

Announcements:

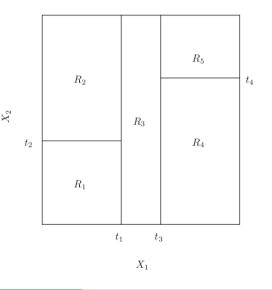
• Homework 7 Due Sunday

21	W	3/19	Polynomial & Step Functions	7.1-7.2		
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4		
23	М	3/24	Regression Splines	7.4		
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26	Q7
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 3/30	Q8
26	м	3/31	Maximal Margin Classifier	9.1		
27	W	4/2	SVC	9.2		
28	F	4/4	SVM	9.3, 9.4	HW #8 Due Sun 4/6	Q9
29	М	4/7	Single Layer NN	10.1		
30	W	4/9	Multi Layer NN	10.2		
31	F	4/11	CNN	10.3	HW #9 Due Sun 4/13	Q10
32	м	4/14	Unsupervised learning / clustering	12.1, 12.4		
33	W	4/16	Virtual: Project Office Hours			
	F	4/18	Review			
	М	4/21	Midterm #3			
	W	4/23				
	F	4/25			Project Due	
			No final exam			


Section 1

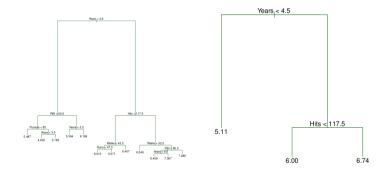
Last time

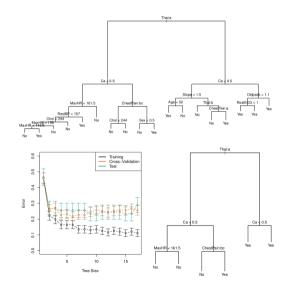
First decision tree example


	Hits	Years	LogSalary
1	81	14	6.163315
2	130	3	6.173786
3	141	11	6.214608
4	87	2	4.516339
5	169	11	6.620073
317	127	5	6.551080
318	136	12	6.774224
319	126	6	5.953243
320	144	8	6.866933
321	170	11	6.907755

Viewing Regions Defined by Tree

How do we actually get the tree? Two steps


- We divide the predictor space that is, the set of possible values for X₁, X₂, ..., X_p into J distinct and non-overlapping regions, R₁, R₂, ..., R_J.
- For every observation that falls into the region R_j, we make the same prediction = the mean of the response values for the training observations in R_j.

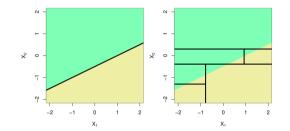

Recursive binary splitting

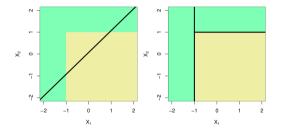
Goal: Pick *s* so that splitting into $\{X \mid X_i < s\}$ $X_2 \le t_2$ Find boxes R_1, \dots, R_I that and $\{X \mid X_i \geq s\}$ results in largest minimize possible reduction in RSS: $X_2 \le t_4$ $R_1(j,s) = \{X \mid X_j < s\}$ $\sum_{i=1}^{J}\sum_{j=1}^{J}(y_i-\hat{y}_{R_j})^2$ R_{-} $R_2(i,s) = \{X \mid X_i \ge s\}$ i=1 $i\in R_i$ \hat{y}_{R_i} = mean response for $\sum_{\mathbf{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i \mid x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$ in $(y_i - \hat{y}_{R_2})^2$ training observations in *j*th $i|x_i \in R_1(j,s)$ box 1.4 X_1

Pruning

Classification version

Evaluating the splits:


p̂_{mk} = proportion of training observations in *R_m* from the *k*th class


• Error:
$$E=1-{\sf max}_k(\hat{p}_{mk})$$

• Gini index:

$$G = \sum_{k=1}^{K} \hat{
ho}_{mk} (1-\hat{
ho}_{mk})$$

Linear models vs trees

Section 2

8.2.1 Bagging

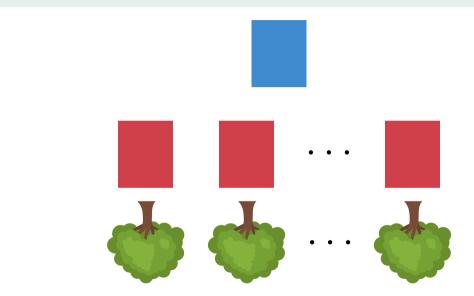
The bootstrap

Want to do (but can't):

Build separate models from independent training sets, and average resulting predictions:

- *f*¹(x), ..., *f*^B(x) for B separate training sets
- Return the average

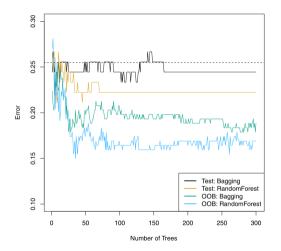
$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x)$$


Boostrap modification:

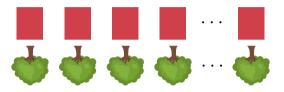
- Work with fixed data set
- Take *B* samples from this data set (with replacement)
- Train method on *b*th sample to get $\hat{f}^{*b}(x)$
- Return average of predictions (regression)

$$\hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^{B}\hat{f}^{*b}(x)$$

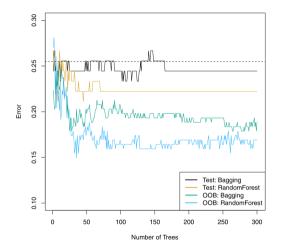
or majority vote (classification)


Tree version

Prediction on new data point



Example: Heart classification data



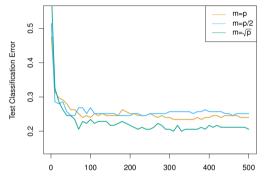
Out of Bag Error Estimation

- On average, bootstrap sample uses about 2/3 of the data
- Remaining observations not used are called *out-of-bag* (OOB) observations
- For each observation, run through all the trees where it wasn't used for building
- Return the average (or majority vote) of those as test prediction

Error using OOB

Bagging code example

Section 3


Random Forests

The idea

- Goal is to decorrelate the bagged trees:
 - If there is a strong predictor, the first split of most trees will be the same
 - Most or all trees will be highly correlated
 - Averaging highly correlated quantities doesn't decrease variance as much as uncorrelated

- The random forrest fix:
 - Each time a split is considered, only use a random subset of *m* the predictors
 - Fresh sample taken every time
 - Typically $m \approx \sqrt{p}$
 - ► On average, (p − m)/p of splits won't consider strong predictor
 - m = p gives back bagging

Example on gene expression

Number of Trees

Coding example for random forests

- Bagging: trees grown independently on random samples. Trees tend to be similar to each other, can result in getting caught in local optima
- Random forest: trees independently on samples, but split is done using random subset of features

Next time

21	W	3/19	Polynomial & Step Functions	7.1-7.2		
22	F	3/21	Step Functions; Basis functions; Start Splines	7.2-7.4		
23	м	3/24	Regression Splines	7.4		
24	w	3/26	Decision Trees	8.1	HW #6 Due Wed 3/26	Q7
25	F	3/28	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 3/30 HW #8 Due Sun 4/6	Q8 Q9
26	м	3/31	Maximal Margin Classifier	9.1		
27	W	4/2	SVC	9.2		
28	F	4/4	SVM	9.3, 9.4		
29	м	4/7	Single Layer NN	10.1		
30	W	4/9	Multi Layer NN	10.2		
31	F	4/11	CNN	10.3	HW #9 Due Sun 4/13	Q10
32	м	4/14	Unsupervised learning / clustering	12.1, 12.4		
33	W	4/16	Virtual: Project Office Hours			
	F	4/18	Review			
	М	4/21	Midterm #3			
	W	4/23				
	F	4/25			Project Due	
			No final exam			