Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression Lecture 11 - CMSE 381

Prof. Lianzhang Bao

Michigan State University

.

Dept of Computational Mathematics, Science & Engineering

Fri, Feb 7, 2025

Announcements

Announcements:

- Monday 2/10 Project day
 - ► Send me a message or email if you're planning on doing an honors version of the project.
- Monday 2/10 Review day
 - Nothing prepped
 - Bring your questions
- Wednesday 2/12 Exam #1
 - ▶ Bring 8.5×11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - Non-internet calculator if you want it

Covered in this lecture

Last Time:

Logistic Regression

This time:

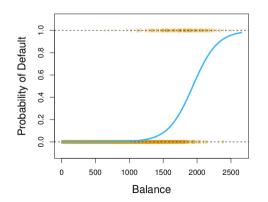
- Multiple Logistic Regression
- Multinomial Logistic Regression

Section 1

Review of Logistic Regression from last time

Logistic regression

- Assume single input X
- Output takes values Y ∈ {Yes, No}



$$p(X) = Pr(Y = yes \mid balance)$$

$$ho(\mathtt{x}) = rac{e^{eta_0 + eta_1 \mathtt{x}}}{1 + e^{eta_0 + eta_1 \mathtt{x}}}$$

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Section 2

Multiple Logistic Regression

New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has only two levels

Multiple Logistic Regression

Multiple features:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Example

	default	student	balance	income
0	No	No	729.526495	44361.625070
1	No	Yes	817.180407	12106.134700
2	No	No	1073.549164	31767.138950
3	No	No	529.250605	35704.493940
4	No	No	785.655883	38463.495880
5	No	Yes	919.588531	7491.558572
6	No	No	825.513331	24905.226580
7	No	Yes	808.667504	17600.451340
8	No	No	1161.057854	37468.529290
9	No	No	0.000000	29275.268290

Default data set

Predict default from balance, student, and income

Section 3

Multinomial Logistic Regression

New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has K levels

Remember dummy variables?

Slide from linear regression days

Region:

	x _{i1}	x _{i2}
South	1	0
West	0	1
East	0	0
	l	

Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from South} \\ 0 & \text{if } i \text{th person not from South} \end{cases}$$
$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person from West} \\ 0 & \text{if } i \text{th person not from West} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}\$ for hospital visits based on some input(s) X

$$Pr(Y = stroke \mid X = x) =$$

$$Pr(Y = overdose \mid X = x) =$$

$$Pr(Y = seizure | X = x) =$$

- Assume Y has K levels
- Make K (the last one)
 the baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Example

Predict $Y \in \{ \text{stroke, overdose, seizure} \}$ for hospital visits based on Xp

$$\begin{split} \Pr(Y = \texttt{stroke} \mid X = x) &= \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)} \\ \Pr(Y = \texttt{overdose} \mid X = x) &= \frac{\exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)} \\ \Pr(Y = \texttt{seizure} \mid X = x) &= \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)} \end{split}$$

Dr. Bao (MSU-CMSE) Lec 11 Fri, Feb 7, 2025 16 / 21

Log odds

Calculated so that log odds between any pair of classes is linear. Specifically, for Y = k vs Y = K, we have

$$\log \left(\frac{\Pr(Y = k \mid X = x)}{\Pr(Y = K \mid X = x)} \right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Plan B: Softmax coding

Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Calculated so that log odds between two classes is linear

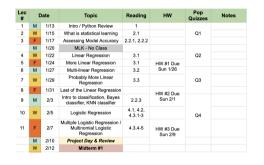
$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

$$\begin{split} & \Pr(Y = \texttt{stroke} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{overdose} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{seizure} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{split}$$

Jupyter Notebook

Lec 11

Next time



Next time:

- Monday 2/10 Project day
 - Send me a message or email if you're planning on doing an honors version of the project.
- Monday 2/10 Review day
 - Nothing prepped
 - Bring your questions
- Wednesday 2/12 Exam #1
 - ▶ Bring 8.5x11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - Non-internet calculator if you want it