Ch 6.3: PCR Lecture 20 - CMSE 381

Prof. Mengsen Zhang

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Wed, March 12, 2025

Announcements

Last time:

PCA

This lecture:

PCR

Announcements:

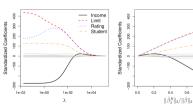
- Exam #2 on Monday!
 - Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - Non-internet calculator
 - questions about project

	W	2/12	Midterm #1		
12	F	2/14	Leave one out CV	5.1.1, 5.1.2	
13	М	2/17	k-fold CV	5.1.3	
14	W	2/19	More k-fold CV	5.1.4-5	
15	F	2/21	k-fold CV for classification	5.1.5	
16	Μ	2/24	Subset selection	6.1	
17	W	2/26	Shrinkage: Ridge	6.2.1	
18	F	2/28	Shrinkage: Lasso	6.2.2	HW #4 Due Sun 3/2
	М	3/3	Spring Break		
	W	3/5	Spring Break		
	F	3/7	Spring Break		
19	М	3/10	PCA	6.3	
20	W	3/12	PCR	6.3	
	F	3/14	Review		HW #5 Due Sun 3/16
	М	3/17	Midterm #2		

Burning questions before midterm #2 of CMSE 381 (Spring 2025)

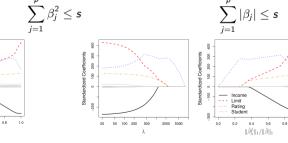
Section 1

Previously...


Shrinkage

Find β to minimize

 $RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$


subject to:

1.0

Linear transformation of predictors

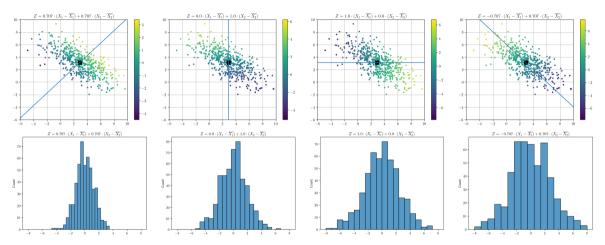
Original Predictors:

 X_1, \cdots, X_p

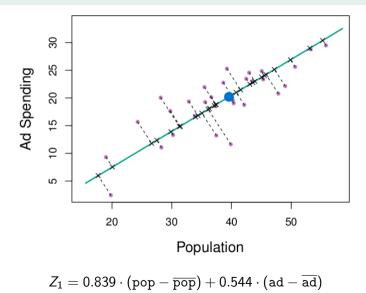
New Predictors:

$$Z_1, \cdots, Z_M$$

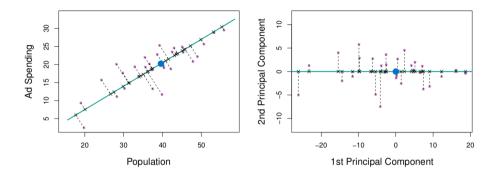
$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$


The goal:

- Find good φ 's (PCA)
- Fit regression model on Z_i's using least squares (PLS)


$$y_i = \theta_0 + \sum_{m=1}^M \theta_m z_{im} + \varepsilon_i$$

• Hope that lower dimensions means less overfitting


PCA - First PC

Projection onto first PC

Drawing points in PC space

Section 2

Principal Components Regression

So you've found your PCA coefficients

Now what?

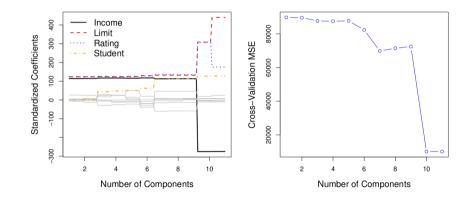
What are we assuming?

Interpretation of PCR coefficients

Original Predictors:

 X_1, \cdots, X_p

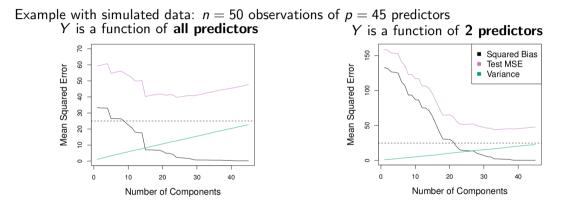
New Predictors:

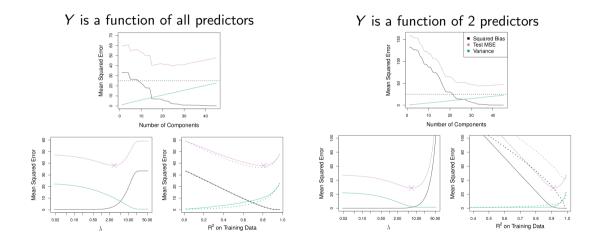

$$Z_1, \cdots, Z_M$$

$$Z_m = \sum_{j=1} \varphi_{jm} X_j$$

Learned model:

$$y = \theta_0 + \theta_1 Z_1 + \dots + \theta_M Z_M$$

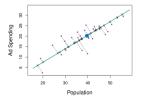

Picking M


Do PCR with hitters data

Dr. Zhang (MSU-CMSE)

Bias-Variance Trade-off

Comparison to results on shrinkage



Properties of PCR

TL;DR

PCR

- Unsupervised dimensionality reduction + linear regression
- Choose component Z₁ in the direction of most variance using only X_i's information
- Choose Z₂ and beyond by the same method after "getting rid" of info in the directions already explained

Next time

	W	2/12	Midterm #1		
12	F	2/14	Leave one out CV	5.1.1, 5.1.2	
13	М	2/17	k-fold CV	5.1.3	
14	W	2/19	More k-fold CV	5.1.4-5	
15	F	2/21	k-fold CV for classification	5.1.5	
16	М	2/24	Subset selection	6.1	
17	W	2/26	Shrinkage: Ridge	6.2.1	
18	F	2/28	Shrinkage: Lasso	6.2.2	HW #4 Due
	М	3/3	Spring Break		Sun 3/2
	W	3/5	Spring Break		
	F	3/7	Spring Break		
19	М	3/10	PCA	6.3	
20	W	3/12	PCR	6.3	
	F	3/14	Review		HW #5 Due Sun 3/16
	М	3/17	Midterm #2		