Ch 3.1: More Linear Regression

Lecture 5 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Fri, Jan 24th, 2025

Announcements

Last time:

• Started 3.1 - Simple linear regression (least squares)

Announcements:

- Homework #1 Due Sun, Jan 27th
- Homework #2 Due Sun, Feb 1st

2/22

r. Zhang (MSU-CMSE) Fri, Jan 24th, 2025

Covered in this lecture

- Confidence interval, hypothesis test, and p-value for coefficient estimates
- Residual standard error (RSE)
- R squared

r. Zhang (MSU-CMSE) Fri, Jan 24th, 2025

Section 1

Last time

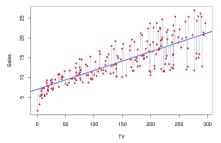
Setup

 Predict Y on a single predictor variable X

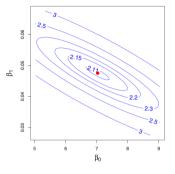
$$Y \approx \beta_0 + \beta_1 X$$

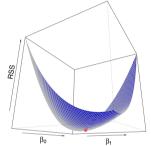
• "≈" "is approximately modeled as"

- Given $(x_1, y_1), \dots, (x_n, y_n)$
- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be prediction for Y on ith value of X.
- $e_i = y_i \hat{y}_i$ is the *i*th residual



Least squares criterion: RSS





Residual sum of squares RSS is

$$RSS = e_1^2 + \dots + e_n^2$$

= $\sum_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

Least squares criterion

Find β_0 and β_1 that minimize the RSS.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Section 2

Assessing Coefficient Estimate Accuracy

rr. Zhang (MSU-CMSE) Fri, Jan 24th, 2025

Bias in estimation

Analogy with mean

- Assume a true value μ^*
- An estimate from training data $\hat{\mu}$
- The estimate is unbiased if $E(\hat{\mu} = \mu^*)$

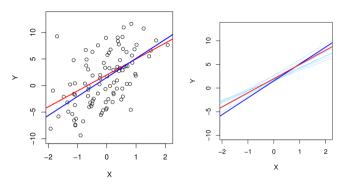
Sample mean is unbiased for population mean:

$$E(\hat{\mu}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \mu$$

Standard variance estimate is biased

$$E(\hat{\sigma}^2) = E\left[\frac{1}{n}\sum_i (X_i - \overline{X})^2\right] \neq \sigma^2$$

Linear regression is unbiased



Variance in estimation

Continuing analogy with mean

- True value μ^*
- ullet Estimate from training data $\hat{\mu}$
- Variance of sample mean $Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$

Variance of linear regression estimates

Variance of linear regression estimates:

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where $\sigma^2 = \operatorname{Var}(\varepsilon)$

ullet Residual standard error is an estimate of σ

$$RSE = \sqrt{RSS/(n-2)}$$

Dr. Zhang (MSU-CMSE)

Coding group work

Run the section titled "Simulating data"

Confidence Interval

The 95% confidence interval for β_1 approximately takes the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

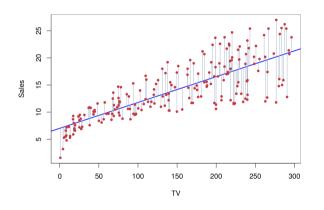
Interpretation:

There is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain β_1 where we repeatedly approximate $\hat{\beta}_1$ using repeated samples.

CI in Advertising data



For the advertising data set, the 95% CIs are:

14 / 22

• β_1 :: [0.042, 0.053]

• β_0 :: [6.130, 7.935]

. Zhang (MSU-CMSE) Fri, Jan 24th, 2025

Hypothesis testing

 H_0 : There is no relationship between X and Y

 H_1 : There is some relationship between X and

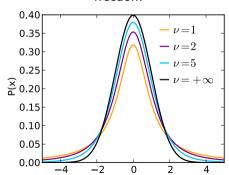
r. Zhang (MSU-CMSE) Fri, Jan 24th, 2025

Test statistic and p-value

Test statistic:

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$$

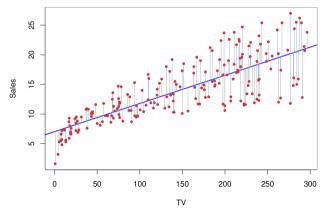
t-distribution with n-2 degrees of freedom



Dr. Zhang (MSU-CMSE

Advertising example

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001



Assessing the accuracy of the module: RSE

Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$
$$= \sqrt{\frac{1}{n-2}\sum_{i}(y_i - \hat{y}_i)^2}$$

Assessing the accuracy of the module: R^2

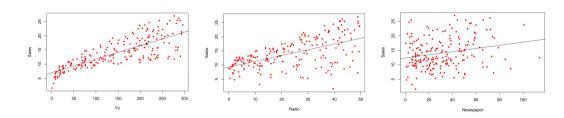
R squared:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where total sum of squares is

$$TSS = \sum_{i} (y_i - \overline{y})^2$$

Advertising example



$$R^2 = 0.61$$

$$R^2 = 0.33$$

$$R^2 = 0.05$$

Coding group work

Run the section titled "Assessing Coefficient Estimate Accuracy"

Next time

CMSE381_S2025_Schedule : Sheet1

Lec #	Date		Topic	Reading	HW	
1	M	1/13	Intro / Python Review	1		
2	W	1/15	What is statistical learning	2.1		
3	F	1/17	Assessing Model Accuracy	2.2.1, 2.2.2		
	М	1/20	MLK - No Class			
4	W	1/22	Linear Regression	3.1		
5	F	1/24	More Linear Regression	3.1	HW #1 Due Sun 1/26	
6	М	1/27	Multi-linear Regression	3.2		
7	W	1/29	Probably More Linear Regression	3.3		
8	F	1/31	Last of the Linear Regression		HW #2 Due Sun 2/1	
9	М	2/3	Intro to classification, Bayes classifier, KNN classifier	2.2.3		

Announcements

- Homework 1
 - Due Sun, Jan 26th
- Homework 2
 - ▶ Due Sun, Feb 2nd