Ch 5.1.3-4: *k*-Fold Cross-Validation Lecture 13 - CMSE 381

Prof. Lianzhang Bao

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Mon, Feb 17, 2025

1/16

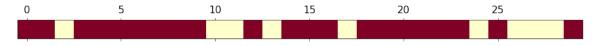
Last time:

- Validation Set
- LOOCV

Announcements:

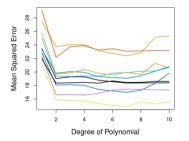
- Exam 1 grades.... hopefully soon
- HW #4 will be posted soon.
 - ► Due Sunday 3/2.

12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	М	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		Q5
15	F	2/21	k-fold CV for classification	5.1.5		
16	М	2/24	Subset selection	6.1		
17	W	2/26	Shrinkage: Ridge	6.2.1		
18	F	2/28	Shrinkage: Lasso	6.2.2	HW #4 Due	
	М	3/3	Spring Break		Sun 3/2	
	W	3/5	Spring Break			
	F	3/7	Spring Break			
19	М	3/10	PCA	6.3		
20	W	3/12	PCR	6.3		Q6
	F	3/14	Review		HW #5 Due	
	М	3/17	Midterm #2		Sun 3/16	


Covered in this lecture

• *k*-fold CV

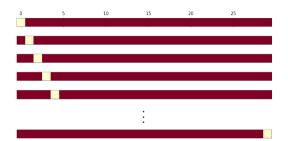
Section 1


Last time

Validation set approach

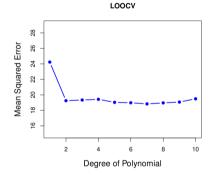
- Divide randomly into two parts:
 - Training set
 - Validation/Hold-out/Testing set
- Fit model on training set
- Use fitted model to predict response for observations in the test set
- Evaluate quality (e.g. MSE)

Problems


Ex. Predict mpg using horsepower

- Highly variable results, no consensus about the error
- Tends to overestimate test error rate

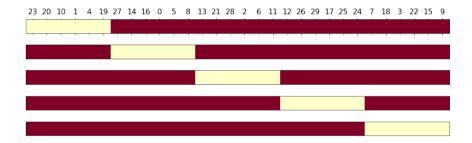
Leave One Out CV (LOOCV)


- Remove (x_1, y_1) for testing.
- Train the model on n-1 points: { $(x_2, y_2), \dots, (x_n, y_n)$ }
- Calculate $MSE_1 = (y_1 \hat{y}_1)^2$
- Remove (x_2, y_2) for testing.
- Train the model on n 1 points: { $(x_1, y_1), (x_3, y_3), \dots, (x_n, y_n)$ }
- Calculate $MSE_2 = (y_2 \hat{y}_2)^2$
- Rinse and repeat

Return the score:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \text{MSE}_i$$

Pros and Cons


- No variance
- Higher computation cost

8/16

Section 2

k-Fold CV

The idea

Mathy version

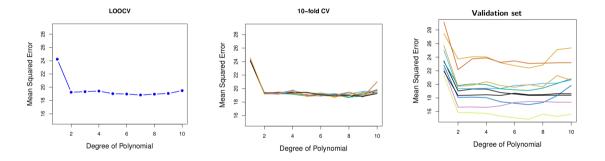
- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold *U_i* and reserve for testing.
- Train the model on remaining points
- Calculate $MSE_i = \frac{1}{\ell} \sum_{(x_j, y_j) \in U_i} (y_j - \hat{y}_j)^2$
- Rinse and repeat

$$CV_{(k)} = rac{1}{k} \sum_{i=1}^k \mathrm{MSE}_i$$

By hand first!

There are 10 students in the class, and we have data points for each. They have already been randomly permuted below. Write down the training/testing sets for a 3-fold CV

• Damien	Fold 1	Fold 2	Fold 3
• Alice			
• Greta			
 Jasmin 			
e Benji			
 Inigo 			
 Firas 			
 Carina 			
 Enrique 			
• Hubert			


Coding - Building k-fold CV

Pros and Cons

Pros:

Comparison

Next time

12	F	2/14	Leave one out CV	5.1.1, 5.1.2		
13	М	2/17	k-fold CV	5.1.3		
14	W	2/19	More k-fold CV	5.1.4-5		Q5
15	F	2/21	k-fold CV for classification	5.1.5		
16	М	2/24	Subset selection	6.1		
17	W	2/26	Shrinkage: Ridge	6.2.1		
18	F	2/28	Shrinkage: Lasso	6.2.2	HW #4 Due	
	М	3/3	Spring Break		Sun 3/2	
	W	3/5	Spring Break			
	F	3/7	Spring Break			
19	М	3/10	PCA	6.3		
20	W	3/12	PCR	6.3		Q6
	F	3/14	Review		HW #5 Due	
	М	3/17	Midterm #2		Sun 3/16	