## Ch 4.3 - Logistic Regression

Prof. Lianzhang Bao

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Weds, Feb 5, 2025

#### Announcements



#### Last Time:

• Finished Linear Regression

#### **Announcements:**

- Homework #3 Due Sunday Feb 9
- Next Monday Review day
  - Nothing prepped
  - Bring your questions
- Wednesday 2/12 Exam #1
  - ▶ Bring 8.5×11 sheet of paper
  - ► Handwritten both sides
  - Anything you want on it, but must be your work
  - ▶ You will turn it in

#### Covered in this lecture

#### Last Time:

- Classification basics
- Bayes classifier
- KNN classifier

#### This time:

• Logistic Regression

## Section 1

Review from last time

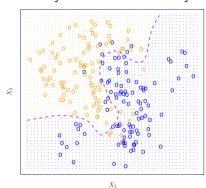
### Error rate

- Training data:  $\{(x_1, y_1), \dots, (x_n, y_n)\}$  with  $y_i$  qualitative
- Estimate  $\hat{y} = \hat{f}(x)$
- Indicator variable

Training error rate:

$$\frac{1}{n}\sum_{i=1}^n\mathrm{I}(y_i\neq\hat{y}_i$$

Test error rate:


$$\operatorname{Ave}(\mathrm{I}(y_0\neq\hat{y}_0))$$

#### **Bayes Classifier:**

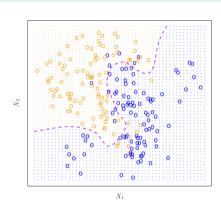
Give every observation the highest probability class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

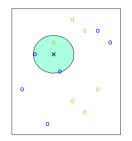
### Bayes Decision Boundary

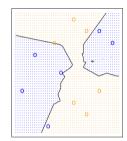


6/25


## Bayes error rate

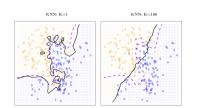
• Error at  $X = x_0$ 


$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$


Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$

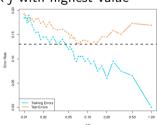



## K-Nearest Neighbors





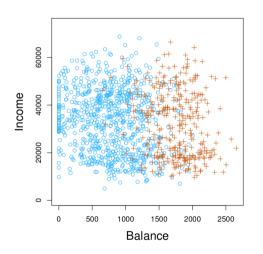
K = 3

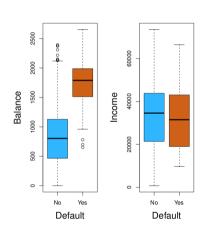

decision boundary



- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

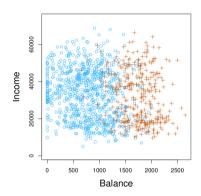
$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$


• Pick *j* with highest value

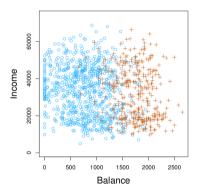



### Section 2

Logistic Regression


## Simulated Default data set






#### What is classification

- Classification: When the response variable is qualitative
- Goal: Model the probability that Y belongs to a particular category



#### Goal for Balance data set



Goal: Model the probability that Y belongs to a particular category Ex.  $Pr(\texttt{default} = \texttt{yes} \mid \texttt{balance})$ 

JK that's a bad idea

#### Bad idea:

- Set Y to be a dummy variable taking values in  $\{0, 1, 2, \dots\}$
- Run regression, and choose k based on what integer value  $\hat{y}$  is closest to

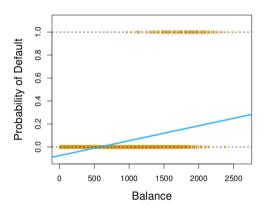
Ex.

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

VS.

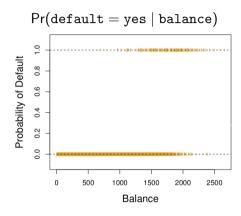
$$Y = \begin{cases} 1 & \text{if mild} \\ 2 & \text{if moderate} \\ 3 & \text{if severe} \end{cases}$$

Bad idea is still not a great idea for two levels


$$p( exttt{balance}) = exttt{Pr(default} = exttt{yes} \mid exttt{balance})$$
 $Y = egin{cases} 0 & ext{if not default} \ 1 & ext{if default} \end{cases}$ 

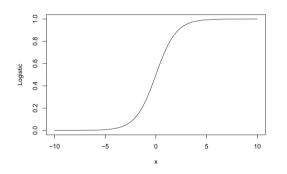
• Fit linear regression

## Bad idea is still not a great idea for two levels


$$p( exttt{balance}) = exttt{Pr(default} = exttt{yes} \mid exttt{balance})$$
 $Y = egin{cases} 0 & ext{if not default} \ 1 & ext{if default} \end{cases}$ 

- Fit linear regression
- Predict default if  $\hat{y} > 0.5$ ; not default otherwise




$$p(balance) = \beta_0 + \beta_1 balance$$

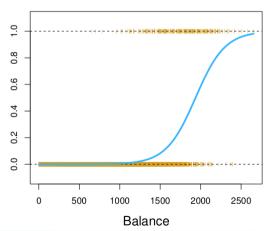
Dr. Bao (MSU-CMSE) Lec 10 Weds, Feb 5, 2025 14/25



## Logistic function

$$y = \frac{e^x}{1 + e^x}$$

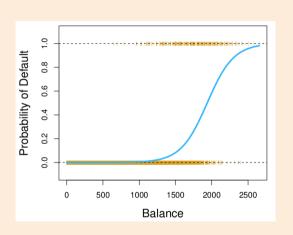



$$p(X)=rac{\mathrm{e}^{eta_0+eta_1X}}{1+\mathrm{e}^{eta_0+eta_1X}}$$

#### Try it out:

desmos.com/calculator/cw1pyzzqci

## Logistic Regression


$$extsf{Pr(default = yes \mid balance)} = rac{e^{eta_0 + eta_1 extsf{balance}}}{1 + e^{eta_0 + eta_1 extsf{balance}}}$$



Bao (MSU-CMSE) Lec 10 Weds, Feb 5, 2025

17 / 25

What will the drawn logistic regression classifier predict for each of the following values of Balance



| Balance | Prediction |
|---------|------------|
| 0       |            |
| 500     |            |
| 1000    |            |
| 1500    |            |
| 2000    |            |
| 2500    |            |

## Odds

$$\frac{p(x)}{1 - p(x)} = \frac{\Pr(Y = 1 \mid X = x)}{1 - \Pr(Y = 1 \mid X = x)} = \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = 0 \mid X = x)}$$

# Probability or risk = $\frac{p}{p+q}$ (p)

Odds = 
$$p:q$$
  $p:q$ 

#### Examples:

- If the probability of default is 90% what are the odds?

  - p(x) = 0.9  $\frac{0.9}{1-0.9} = 9$
- If the odds are 1/3, what is the probability of default?
  - $\frac{p}{1-p} = 1/3$
  - ▶ 3p' = 1 p
  - ▶ 4p = 1
  - p = 1/4

## How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

20 / 25

## Using coefficients to make predictions

|           | Coefficient | Std. error | z-statistic | <i>p</i> -value |
|-----------|-------------|------------|-------------|-----------------|
| Intercept | -10.6513    | 0.3612     | -29.5       | < 0.0001        |
| balance   | 0.0055      | 0.0002     | 24.9        | < 0.0001        |

What is the estimated probability of default for someone with a balance of \$1,000?

What is the estimated probability of default for someone with a balance of \$2,000:

## Interpreting the coefficients

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

|           | Coefficient | Std. error | z-statistic | <i>p</i> -value |
|-----------|-------------|------------|-------------|-----------------|
| Intercept | -10.6513    | 0.3612     | -29.5       | < 0.0001        |
| balance   | 0.0055      | 0.0002     | 24.9        | < 0.0001        |

## Confusion Matrix: Predicting default from balance

|                   |       | True default status |     |       |
|-------------------|-------|---------------------|-----|-------|
|                   |       | No                  | Yes | Total |
| Predicted         | No    | 9644                | 252 | 9896  |
| $default\ status$ | Yes   | 23                  | 81  | 104   |
|                   | Total | 9667                | 333 | 10000 |

#### True **Total** Yes No a + bYes $\boldsymbol{a}$ **Predicted** c+dNo Total Na+c

Do coding in jupyter notebook

24 / 25

## Next time

- Fri 2/7
  - Multiple Logistic Regression/Multinomial Logistic Regression

| Lec<br># | C | ate  | Topic                                                                | Reading              | HW                   | Pop<br>Quizzes | Notes |
|----------|---|------|----------------------------------------------------------------------|----------------------|----------------------|----------------|-------|
| 1        | M | 1/13 | Intro / Python Review                                                | 1                    |                      |                |       |
| 2        | W | 1/15 | What is statistical learning                                         | 2.1                  |                      | Q1             |       |
| 3        | F | 1/17 | Assessing Model Accuracy                                             | 2.2.1, 2.2.2         |                      |                |       |
|          | М | 1/20 | MLK - No Class                                                       |                      |                      |                |       |
| 4        | W | 1/22 | Linear Regression                                                    | 3.1                  |                      | Q2             |       |
| 5        | F | 1/24 | More Linear Regression                                               | 3.1                  | HW #1 Due            |                |       |
| 6        | М | 1/27 | Multi-linear Regression                                              | 3.2                  | Sun 1/26             |                |       |
| 7        | w | 1/29 | Probably More Linear<br>Regression                                   | 3.3                  |                      | Q3             |       |
| 8        | F | 1/31 | Last of the Linear Regression                                        |                      | HW #2 Due            |                |       |
| 9        | М | 2/3  | Intro to classification, Bayes<br>classifier, KNN classifier         | 2.2.3                | Sun 2/1              |                |       |
| 10       | w | 2/5  | Logistic Regression                                                  | 4.1, 4.2,<br>4.3.1-3 |                      | Q4             |       |
| 11       | F | 2/7  | Multiple Logistic Regression /<br>Multinomial Logistic<br>Regression | 4.3.4-5              | HW #3 Due<br>Sun 2/9 |                |       |
|          | М | 2/10 | Project Day & Review                                                 |                      |                      |                |       |
|          | W | 2/12 | Midterm #1                                                           |                      |                      |                |       |

#### **Announcements**

- Homework 3
  - ▶ Due Sun, Feb 9