Ch 5.1.3-4: *k*-Fold Cross-Validation

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, Feb 17, 2025

Announcements

Last time:

- Validation Set
- LOOCV

	W	2/12	Midterm #1		
12	F	2/14	Leave one out CV	5.1.1, 5.1.2	
13	M	2/17	k-fold CV	5.1.3	
14	W	2/19	More k-fold CV	5.1.4-5	
15	F	2/21	k-fold CV for classification	5.1.5	
16	M	2/24	Subset selection	6.1	
17	W	2/26	Shrinkage: Ridge	6.2.1	
18	F	2/28	Shrinkage: Lasso	6.2.2	HW #4 Due
	M	3/3	Spring Break		Sun 3/2
	W	3/5	Spring Break		
	F	3/7	Spring Break		
19	M	3/10	PCA	6.3	
20	W	3/12	PCR	6.3	
	F	3/14	Review		HW #5 Due Sun 3/16
	M	3/17	Midterm #2		

2/16

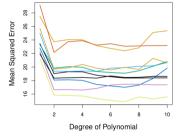
Zhang (MSU-CMSE) Mon, Feb 17, 2025

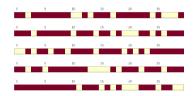

Covered in this lecture

• k-fold CV

Section 1

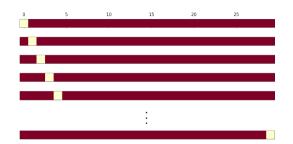
Last time


Validation set approach


- Divide randomly into two parts:
 - Training set
 - Validation/Hold-out/Testing set
- Fit model on training set
- Use fitted model to predict response for observations in the test set
- Evaluate quality (e.g. MSE)

Or. Zhang (MSU-CMSE) Mon, Feb 17, 2025

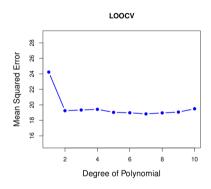
Problems


Ex. Predict mpg using horsepower

- Highly variable results, no consensus about the error
- Tends to overestimate test error rate

Leave One Out CV (LOOCV)

- Remove (x_1, y_1) for testing.
- Train the model on n-1 points: $\{(x_2, y_2), \dots, (x_n, y_n)\}$
- Calculate $MSE_1 = (y_1 \hat{y}_1)^2$
- Remove (x_2, y_2) for testing.
- Train the model on n-1 points: $\{(x_1, y_1), (x_3, y_3), \dots, (x_n, y_n)\}$
- Calculate $MSE_2 = (y_2 \hat{y}_2)^2$
- Rinse and repeat



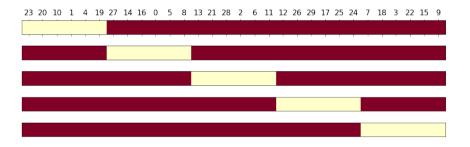
Return the score:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Dr. Zhang (MSU-CMSE)

Pros and Cons

- No variance
- Higher computation cost


8/16

Zhang (MSU-CMSE) Mon, Feb 17, 2025

Section 2

k-Fold CV

The idea

: Zhang (MSU-CMSE) Mon, Feb 17, 2025

Mathy version

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\mathrm{MSE}_i = \frac{1}{\ell} \sum_{(\mathsf{x}_i, \mathsf{y}_j) \in U_i} (\mathsf{y}_j \hat{\mathsf{y}}_j)^2$

Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{MSE}_i$$

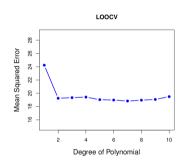
By hand first!

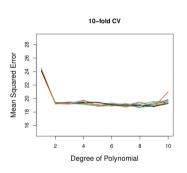
There are 10 students in the class, and we have data points for each. They have already been randomly permuted below. Write down the training/testing sets for a 3-fold CV

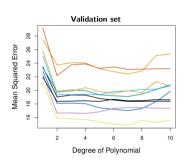
• Damien Fold 1 Fold 2 Fold 3

- Alice
- Greta
- Jasmin
- Benji
- Inigo
- Firas
- Carina
- Enrique
- Hubert

. Zhang (MSU-CMSE) Mon, Feb 17, 2025


Coding - Building k-fold CV


r. Zhang (MSU-CMSE) Mon, Feb 17, 2025


Pros and Cons

Pros: Cons:

Comparison

15 / 16

. Zhang (MSU-CMSE) Mon, Feb 17, 2025

Next time

	W	2/12	Midterm #1		
12	F	2/14	Leave one out CV	5.1.1, 5.1.2	
13	M	2/17	k-fold CV	5.1.3	
14	W	2/19	More k-fold CV	5.1.4-5	
15	F	2/21	k-fold CV for classification	5.1.5	
16	M	2/24	Subset selection	6.1	
17	W	2/26	Shrinkage: Ridge	6.2.1	
18	F	2/28	Shrinkage: Lasso	6.2.2	HW #4 Due Sun 3/2
	M	3/3	Spring Break		
	W	3/5	Spring Break		
	F	3/7	Spring Break		
19	M	3/10	PCA	6.3	
20	W	3/12	PCR	6.3	
	F	3/14	Review		HW #5 Due Sun 3/16
	М	3/17	Midterm #2		

r. Zhang (MSU-CMSE) Mon, Feb 17, 2025