Ch 6.3: PCR

Lecture 20 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Wed, Oct 15, 2025

Announcements

Last time:

PCA

This lecture:

PCR

Announcements:

- Submit your questions by Thursday (10/16) 5 pm!
- Exam #2 on next week!
 - ▶ Bring 8.5×11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - ▶ You will turn it in
 - ► Non-internet calculator
 - questions about project

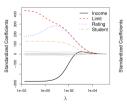
12	F	9/26	Leave one out CV	5.1.1, 5.1.2	
13	М	9/29	k-fold CV	5.1.3	
14	W	10/1	More k-fold CV	5.1.4-5	
15	F	10/3	k-fold CV for classification	5.1.5	
16	М	10/6	Subset selection	6.1	
17	W	10/8	Shrinkage: Ridge	6.2.1	
18	F	10/10	Shrinkage: Lasso	6.2.2	HW #4 Due
19	М	10/13	PCA	6.3	Sun 10/12
20	W	10/15	PCR	6.3	
	F	10/17	Review		
	М	10/20	Fall Break		
	W	10/22	Midterm #2		
21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due Sun 10/26
22	М	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	

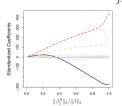
Section 1

Previously...

Dr. Zhang (MSU-CMSE)

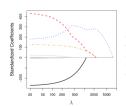
Shrinkage

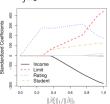

Find β to minimize


$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to:

Least Squares:


No constraints


Ridge:

$$\sum_{i=1}^{p} \beta_j^2 \le s$$

The Lasso:

$$\sum_{j=1}^p |eta_j| \leq s$$

Dr. Zhang (MSU-CMSE

Wed, Oct 15, 2025

Linear transformation of predictors

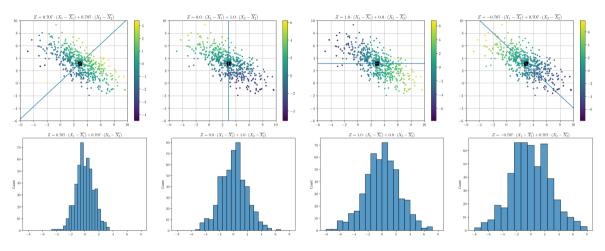
Original Predictors:

$$X_1, \cdots, X_p$$

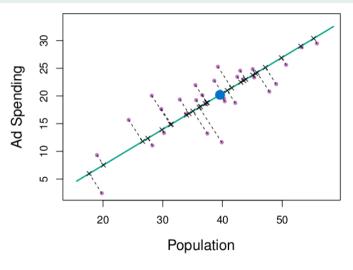
New Predictors:

$$Z_1,\cdots,Z_M$$

$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$

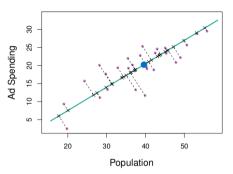

The goal:

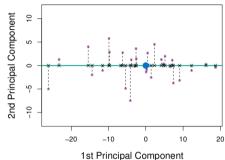
- Find good φ 's (PCA)
- Fit regression model on Z_i 's using least squares (PLS)


$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \varepsilon_i$$

 Hope that lower dimensions means less overfitting

PCA - First PC


Projection onto first PC



$$Z_1 = 0.839 \cdot (pop - \overline{pop}) + 0.544 \cdot (ad - \overline{ad})$$

Zhang (MSU-CMSE) Wed, Oct 15, 2025

Drawing points in PC space

What will you learn from this lecture?

- Why do you want to use the PCs in regression models?
 - What assumptions do you have to make for it to be a good idea to use principal component regression (PCR)?
 - Or conversely, what is a typical bad scenario to use PCR?
- How do you implement PCR in Python?
- How do you interpret the model coefficients when using PCR?
- How do you choose the number of PC to use in PCR?
 - Given a figure of, e.g., cross-validation score as a function of the number of PCs, you should be able to choose appropriately and provide rationales in terms of bias-variance tradeoff.
 - You should be able to generate such figures in Python.
- What is the relationship/differences between PCR and feature selection and regularization methods that you learned in this part of the course?

Dr. Zhang (MSU-CMSE) Wed. Oct 15, 2025 9/19

Section 2

Principal Components Regression

r. Zhang (MSU-CMSE) Wed, Oct 15, 2025

So you've found your PCA coefficients

Now what?

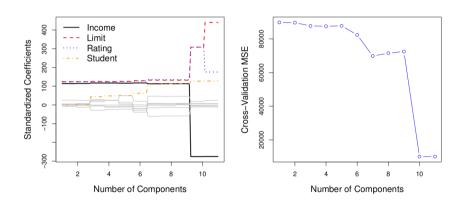
What are we assuming?

Interpretation of PCR coefficients

Original Predictors:

$$X_1, \cdots, X_p$$

New Predictors:

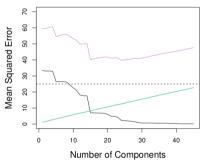

$$Z_1, \cdots, Z_M$$

$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$

Learned model:

$$y = \theta_0 + \theta_1 Z_1 + \dots + \theta_M Z_M$$

Picking M



Do PCR with hitters data

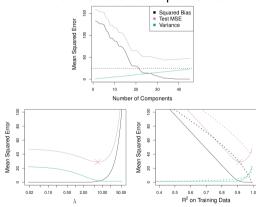
Or. Zhang (MSU-CMSE) Wed, Oct 15, 2025

Bias-Variance Trade-off

Example with simulated data: n = 50 observations of p = 45 predictors Y is a function of **all predictors** Y is a function of **2 predictors**

Squared Bias
Test MSE
Variance

Variance


Number of Components

Comparison to results on shrinkage

Y is a function of all predictors Mean Squared Error Number of Components Mean Squared Error

Mean Squared Error

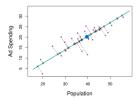
Y is a function of 2 predictors

16 / 19

Zhang (MSU-CMSE) Wed, Oct 15, 2025

R2 on Training Data

Properties of PCR


Test your understanding: PollEv

r. Zhang (MSU-CMSE) Wed, Oct 15, 2025

TL;DR

PCR

- Unsupervised dimensionality reduction + linear regression
- Choose component Z₁ in the direction of most variance using only X_i's information
- Choose Z₂ and beyond by the same method after "getting rid" of info in the directions already explained

Next time

12	F	9/26	Leave one out CV	5.1.1, 5.1.2	
13	М	9/29	k-fold CV	5.1.3	
14	W	10/1	More k-fold CV	5.1.4-5	
15	F	10/3	k-fold CV for classification	5.1.5	
16	М	10/6	Subset selection	6.1	
17	W	10/8	Shrinkage: Ridge	6.2.1	
18	F	10/10	Shrinkage: Lasso	6.2.2	HW #4 Due
19	М	10/13	PCA	6.3	Sun 10/12
20	W	10/15	PCR	6.3	
	F	10/17	Review		
	М	10/20	Fall Break		
	W	10/22	Midterm #2		
21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due Sun 10/26
22	М	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	

r. Zhang (MSU-CMSE) Wed, Oct 15, 2025