Ch 2.2: Assessing Model Accuracy Lecture 3 - CMSE 381

Prof. Guanqun Cao

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Friday, Aug 29, 2025

Announcements

Last time:

• Ch 2.1, Vocab day!

Announcements:

- Get on slack!
 - lacksquare +1 point on the first homework if you post a gif in the thread
- First homework due Sunday, 9/7.
- Office hours: see website

Covered in this lecture

- Mean Squared Error (regression)
- Train vs Test
- Bias Variance Trade off

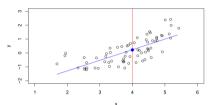
Quick review of notation

Section 1

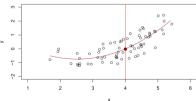
Mean Squared Error

Which is better?

A linear model $\hat{f}_L(X) = \hat{\beta}_0 + \hat{\beta}_1 X$ gives a reasonable fit here



A quadratic model $\hat{f}_Q(X) = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 X^2$ fits slightly better.



No free lunch

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$



Group Work

Given the following data, you decide to use the model

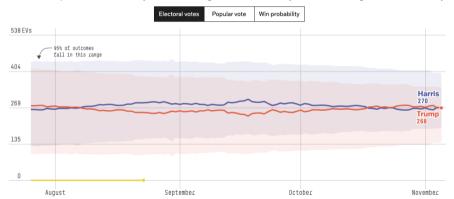
$$\hat{f}(X_1, X_2) = 1 - 3X_1 + 2X_2.$$

What is the MSE?

	X_1	X_2	Υ
	0	7	14
	1	-3	-6
	5	2	-10
	-1	1	7

How has the forecast changed over time?

The forecast updates at least once a day and whenever we get new data. Uncertainty will decrease as we get closer to Election Day.



Train vs test

Training set:

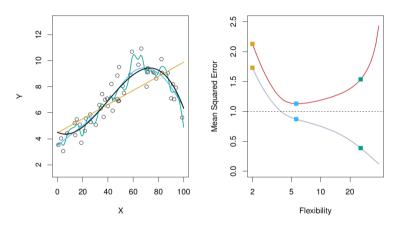
The observations $\{(x_1, y_1), \dots, (x_n, y_n)\}$ used to get the estimate \hat{f}

Test set:

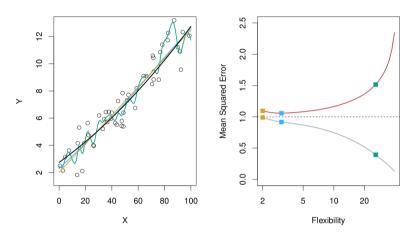
The observations $\{(x_1', y_1'), \cdots, (x_{n'}', y_{n'}')\}$ used to compute the average squared prediction error

$$\frac{1}{n'}\sum_{i}(y'_i-\hat{f}(x'_i))^2$$

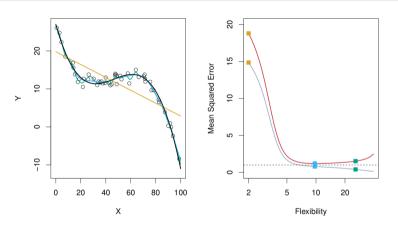
Why not just get the best model for the training data?



A more linear example



A more non-linear example



A simple solution: Train/test split

More on this in Ch 5

Section 2

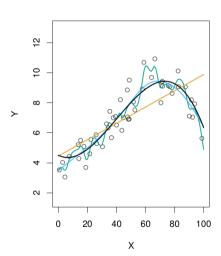
Bias-Variance Trade-Off

Bias-variance

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

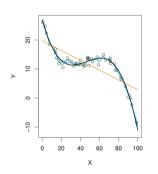
Variance

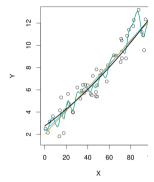
Variance: the amount by which \hat{f} would change if we estimated it using a different training data set.



Bias

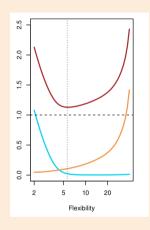
Bias: the error that is introduced by approximating a (complicated) real-life problem by a much simpler model.





Group work





Label the line corresponding to each of the following:

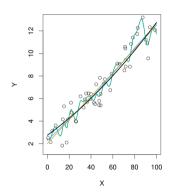
- MSE
- Bias
- Variance of $\hat{f}(x_0)$

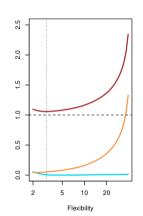
20 / 25

ullet Variance of arepsilon

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

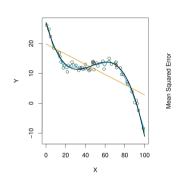
Another example

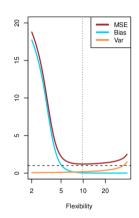




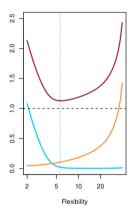
$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Yet another example





$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$



$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Group work: coding

See jupyter notebook

Next time

- Next week:
 - ► Monday no class
 - ▶ 3.1 Linear Regression
- Sunday (9/7)
 - ► Homework due midnight on crowdmark