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Announcements

Announcements:
e HW #2 Due Sunday!

@ Office hours

Last time:

@ 3.2 Multiple Linear Regression
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Covered in this lecture

e RSE, R?

e Confidence intervals and
prediction intervals

@ Qualitative predictors
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Section 1

Continued: Questions to ask of your model
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Linear Regression with Multiple Variables

@ ¢ = y; — y;i is the jth residual
e RSS = -e,-2

1

v

@ RSS is minimized at least

@ Predict Y on a multiple variables X .. .
squares coefficient estimates

Y = fo+ 1 X1+ B Xo+ - Bpxp t+ €

e Find good guesses for ffo, Bl, e
° )A/i:30+3lxi+"‘+/@pxp
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Review: Questions to ask of your model

@ s at least one of the predictors
Xi,---,Xp useful in predicting the
response?

@ Do all the predictors help to explain
Y, or is only a subset of the
predictors useful?
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Q3 J

How well does the model fit the data?
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Assessing the accuracy of the module

Almost the same as before

Residual standard error (RSE): R squared:
; o TSS—RSS _ RSS
RSE = | ————RSS N TSS N TSS
n—p—1
TSS =) (vi—y)
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R? on Advertising data

e Just TV: R2 =0.61
e Just TV and radio: R? = 0.89719
o All three variables: R? = 0.8972
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RSE on Advertising Data

@ Just TV: RSE = 3.26
@ Just TV and radio: RSE = 1.681
@ All three variables: RSE = 1.686
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If all else fails, look at the data
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Q4
Given a set of predictor values, what response value should we
predict, and how accurate is our prediction?
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Q4: Making predictions

Given estimates Bo, . ,BAP for Bo, -+, Bp
Least squares plane:

?:BO"‘BIXI‘F”""Bpo

estimate for the true population regression plane

Radio

f(X) :/80+51X1+"‘+5pxp
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Confidence vs Prediction Model

Confidence Interval
The range likely to contain the population
parameter (mean, standard deviation) of
interest.

Prediction Interval
The range that likely contains the value of
the dependent variable for a single new
observation given specific values of the
independent variables.
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Confidence Region
=== 85% Prediction BEand
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Specific to the Advertising Data

Confidence interval: quantify the
uncertainty surrounding the average
sales over a large number of cities.

Advertising example:
If $100K is spent on TV, and $20K
on radio, in each of n cities

95% Cl for average sales:
[10,985, 11,528].

Dr. Cao (MSU-CMSE)

Prediction Interval: quantify the
uncertainty in sales for a particular
city.

Advertising example:

Given that $100,000 is spent on TV
advertising and $20,000 is spent on
radio advertising in Gotham City

95% prediction interval for Gotham:
[7,930, 14,580].
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Comparing the two

—_— =t
95% Confidence Region
=== 95% Prediction Band
= Data
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Go take a look at the code under Q4
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Review: Questions to ask of your model

@ Is at least one of the predictors
X1, -+, Xp useful in predicting the
response?

@ Do all the predictors help to explain
Y, or is only a subset of the
predictors useful?

© How well does the model fit the data?

@ Given a set of predictor values, what
response value should we predict, and
how accurate is our prediction?
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Section 2

Qualitative Predictors
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Reminder: Qualitative vs Quantitative predictors

Quantitative: Qualitative/Categorical:
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New data set! Credit card balance

Balance

Education

Income

50 100 150

o

|

Rating

2 &0 1000

T

own: house ownership
student: student status
status: marital status

region: East, West, or South
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What if....

... your variables aren’t quantitative?
Home ownership
Student status

o

. Example
e Major

o

o

o

Investigate differences in credit card
balance between people who own a house
Gender and those who don't, ignoring the other
Ethnicity variables.

Country of origin
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One-hot encoding

Create a new variable

1 if ith person is a student
Xj =
' 0 if ith person is not a student

Model:

yi = Bo + Bixi +€;

_ JBo+B1+ei if ith person is student
C\Bo+e if ith person isn't
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Interpretation

Model:

coef stderr t P>t] [0.025 0.975]
Intercept 480.3694 23.434 20.499 0.000 434.300 526.439
Student[T.Yes] 396.4556 74.104 5350 0.000 250.771 542.140

y= 480.36 + 396.46 - Xstudent
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Who cares about 0/17

Old version: 0/1

1
Xj =
0

Model:

if ith person is a student

if ith person is not a student

yi = Bo+ Bixi +¢€;
_ {5o+ﬂ1+€i

if ith person is student

Bo + €; if ith person isn't

Dr. Cao (MSU-CMSE)

Alternative version: +1

1
Xj = 4

Model:

if ith person is a student

if ith person is not a student

yi = Bo + Pixi +€;
{/30+/31 + €

if ith person is student

Bo — B1 +€;

if ith person isn't
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Qualitiative Predictor with More than Two Levels

Region:
Create spare dummy variables:
Xi1 X2
South 1 if ith person from South
Xji1 =
b 0 if ith person not from South
West
1 if ith person from West
Xip =
East 2 0 if ith person not from West

yi = Bo + Bixi1 + Baxiz + €;
Bo + Bixj1 +€; if ith person from South
= < Bo + Boxip +¢&; if ith person from West
Bo + € if ith person from East
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More on multiple levels

Coefficient ~ Std. error  t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
region[South] —18.69 65.02 —0.287 0.7740
region[West] —12.50 56.68 —0.221 0.8260
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Do code section on " Playing with multi-level variables”
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Next time
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Topic Reading
Intro / Python Review 1
What is statistical learning 21

Assessing Model Accuracy  2.2.1,2.2.2
Labor Day - No Class

Linear Regression 3.1
More Linear Regression 3.1
Multi-linear Regression 3.2

Probably Morg Linear 33
Regression

Last of the Linear Regression
Intro to classification, Bayes
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