Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression Lecture 11 - CMSE 381

Prof. Guanqun Cao

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 19, 2025

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

Announcements

CMSE381_F2025_Schedule : Schedule							
Lec #	Date		Topic	Reading	HW		
1	M	8/25	Intro / Python Review	1			
2	W	8/27	What is statistical learning	2.1			
3	F	8.29	Assessing Model Accuracy	2.2.1, 2.2.2			
	М	9/1	Labor Day - No Class				
4	W	9/3	Linear Regression	3.1			
5	F	9/5	More Linear Regression	3.1	HW #1 Due		
6	М	9/8	Multi-linear Regression	3.2	Sun 9/7		
7	W	9/10	Probably More Linear Regression	3.3			
8	F	9/12	Last of the Linear Regression		HW #2 Due		
9	М	9/15	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 9/14		
10	W	9/17	Logistic Regression	4.1, 4.2, 4.3.1-3			
11	F	9/19	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 9/21		
	М	9/22	Project Day & Review				
	W	9/24	Midterm #1				
12	F	9/26	Leave one out CV	5.1.1, 5.1.2			
40		0/00	1.4-1-1-01/	F 4 0			

Announcements:

- Monday Project day
 - Will talk about the project
- Monday Review day
 - Send me your questions (esp. technical ones)
 - Bring your questions
- ullet Wednesday Exam #1
 - ▶ Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - Non-internet calculator if you want it

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025 2/21

Covered in this lecture

Last Time:

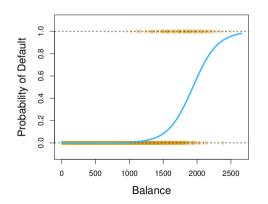
Logistic Regression

This time:

- Multiple Logistic Regression
- Multinomial Logistic Regression

3/21

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025


Section 1

Review of Logistic Regression from last time

Or. Cao (MSU-CMSE) Fri, Sep 19, 2025

Logistic regression

- Assume single input X
- Output takes values Y ∈ {Yes, No}

$$p(X) = Pr(Y = yes \mid balance)$$

$$p(\mathbf{x}) = rac{e^{eta_0 + eta_1 \mathbf{x}}}{1 + e^{eta_0 + eta_1 \mathbf{x}}}$$

5/21

Cao (MSU-CMSE) Fri, Sep 19, 2025

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

6/21

Playing with the logistic function: desmos.com/calculator/cw1pyzzgci

Section 2

Multiple Logistic Regression

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has only two levels

Multiple Logistic Regression

Multiple features:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}$$

Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Example

	default	student	balance	income
0	No	No	729.526495	44361.625070
1	No	Yes	817.180407	12106.134700
2	No	No	1073.549164	31767.138950
3	No	No	529.250605	35704.493940
4	No	No	785.655883	38463.495880
5	No	Yes	919.588531	7491.558572
6	No	No	825.513331	24905.226580
7	No	Yes	808.667504	17600.451340
8	No	No	1161.057854	37468.529290
9	No	No	0.000000	29275.268290

Default data set

Predict default from balance, student, and income

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025 10 / 21

Section 3

Multinomial Logistic Regression

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has K levels

Remember dummy variables?

Slide from linear regression days

Region:

X _{i1}	X _{i2}
1	0
0	1
0	0
	1

Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from South} \\ 0 & \text{if } i \text{th person not from South} \end{cases}$$
 $x_{i2} = \begin{cases} 1 & \text{if } i \text{th person from West} \\ 0 & \text{if } i \text{th person not from West} \end{cases}$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}\$ for hospital visits based on some input(s) X

$$Pr(Y = stroke \mid X = x) =$$

$$Pr(Y = overdose \mid X = x) =$$

$$Pr(Y = seizure | X = x) =$$

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

Multinomial Logistic Regression

Plan A

- Assume Y has K levels
- Make K (the last one)
 the baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}\$ for hospital visits based on Xp

$$\begin{split} \Pr(Y = \texttt{stroke} \mid X = x) &= \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ \Pr(Y = \texttt{overdose} \mid X = x) &= \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ \Pr(Y = \texttt{seizure} \mid X = x) &= \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \end{split}$$

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

Log odds

Calculated so that log odds between any pair of classes is linear. Specifically, for Y = k vs Y = K, we have

$$\log \left(\frac{\Pr(Y = k \mid X = x)}{\Pr(Y = K \mid X = x)} \right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

Plan B: Softmax coding

Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

Softmax example

$$\begin{split} & \Pr(Y = \texttt{stroke} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{overdose} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{seizure} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{split}$$

Dr. Cao (MSU-CMSE) Fri, Sep 19, 2025

Jupyter Notebook

Next time

CMSE381_F2025_Schedule : Schedule

Lec	Date				HW	
#			Topic	Reading		
1	М	8/25	Intro / Python Review	1		
2	W	8/27	What is statistical learning	2.1		
3	F	8.29	Assessing Model Accuracy	2.2.1, 2.2.2		
	M	9/1	Labor Day - No Class			
4	W	9/3	Linear Regression	3.1		
5	F	9/5	More Linear Regression	3.1	HW #1 Due	
6	М	9/8	Multi-linear Regression	3.2	Sun 9/7	
7	W	9/10	Probably More Linear Regression	3.3		
8	F	9/12	Last of the Linear Regression		HW #2 Due	
9	М	9/15	Intro to classification, Bayes classifier, KNN classifier	2.2.3	Sun 9/14	
10	W	9/17	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	F	9/19	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	HW #3 Due Sun 9/21	
	M	9/22	Project Day & Review	Project Day & Review		
	W	9/24	Midterm #1			
12	F	9/26	Leave one out CV	5.1.1, 5.1.2		
40		0/00	1. 4-1-1 007	E 4 0		

Pr. Cao (MSU-CMSE) Fri, Sep 19, 2025