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Announcements

Last time:

7.1 Polynomial regression

7.2 Step functions

This lecture:

7.2 Step functions

7.3 Basis functions

7.4 Regression Splines (Finish next
lecture)

Announcements:

HW #6 Due *11/2*
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Section 1

Last time
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Polynomial regression

Replace linear model

yi = β0 + β1x1 + εi

with

yi = β0 + β1x1 + β2x
2
i + · · ·+ βdx

d
i + εi
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Example with wage data

−184.1542 + 21.24552 ∗ age +−0.56386 ∗ age2 + 0.00681 ∗ age3 +−3e − 05 ∗ age4
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Step functions

I(X < c)

I(c1 ≤ X < c2)

I(c ≤ X )

Learned model:

yi = β0 + β1C1(xi ) + β2C2(xi ) + · · ·+ βKCK (xi ) + εi
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Example: Cut points at -4, -1, 3, 6

C0(X )

C1(X )

C2(X )

C3(X )

C4(X )
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Step function example
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Section 2

Classification versions
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Remember logisitic regression?

p(X ) =
eβ0+β1X

1 + eβ0+β1X

Multiple features:

p(X ) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
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Classification version: Polynomial regression

Pr(yi > 250 | xi ) =
exp(β0 + β1xi + · · ·+ βdx

d
i )

1 + exp(β0 + β1xi + · · ·+ βdx
d
i )

Dr. Cao (MSU-CMSE) Monday, Oct 27, 2025 11 / 24



Classification version: Step functions

Pr(yi > 250 | xi ) =
exp(β0 + β1C1(xi ) + β2C2(xi ) + · · ·+ βKCK (xi ))

1 + exp(β0 + β1C1(xi ) + β2C2(xi ) + · · ·+ βKCK (xi ))
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Coding bit: classification version
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A few more comments on step functions

Gives the chance to break up the
domain, avoid forcing global structure

Need to make decisions about the ci .
A bit arbitrary unless your data has
natural breakpoints.

Popular in biostats and epidemiology
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Section 3

Basis functions

Dr. Cao (MSU-CMSE) Monday, Oct 27, 2025 15 / 24



Basis Functions Setup

Polynomial and piecewise-constant regression models are special cases of a basis function
approach.

yi = β0 + β1b1(xi ) + β2b2(xi ) + · · ·+ βKbK (xi ) + εi
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Section 4

Regression Splines
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Piecewise polynomials

Fit a polynomial regression

yi = β0+β1x1+β2x
2
i + · · ·+βdx

d
i +εi

Let the βi ’s be different at different
locations of the range.
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Example of piecewise polynomial

Example:
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The fix

Fit piecewise polynomial

Require continuity at knots
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The better fix: Cubic splines

Fit piecewise polynomial

Require continuity at knots

Require the first and second
derivatives to be continuous at knots
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Example

We have the following piecewise cubic
polynomial:

f (x) =

{
2 + x + x2 + 0.1x3 x ≤ 1

b0 + b1x + b2x
2 − x3 x > 1

What are b1, b1, and b2 to make this a
cubic spline?

Check your answers: www.desmos.com/calculator/kbm0zivqco
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More space for work

f (x) =

{
2 + x + x2 + 0.1x3 x ≤ 1

b0 + b1x + b2x
2 − x3 x > 1
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Next time
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