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Announcements

Last time:
@ Subset selection
This time:
@ Ridge regression
Announcements:
e HW #4 due Sunday 10/12
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Section 1

Last time
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Subset selection

Algorithm 6.1 Best subset selection

1. Let My denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. Fork=1,2,...p:
(a) Fit all (f) models that contain exactly k& predictors.

(b) Pick the best among these (f) models, and call it M. Here best
is defined as having the smallest RSS, or equivalently largest R2.

w

. Select a single best model from among My,..., M, using cross-
validated prediction error, C,, (AIC), BIC, or adjusted R

Algorithm 6.2 Forward stepwise selection

1. Let Mg denote the null model, which contains no predictors.

2. Fork=0,...,p—1:

(a) Consider all p — k models that augment the predictors in M,
with one additional predictor.

(b) Choose the best among these p — k models, and call it M.
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R2.

Algorithm 6.3 Backward stepwise selection

1. Let M, denote the full model, which contains all p predictors.
2. Fork=pp—1,...,1
(a) Consider all £ models that contain all but one of the predictors
in My, for a total of k — 1 predictors.
(b) Choose the best among these k models, and call it Mj,_;. Here

best is defined as having smallest RSS or highest R2.

3. Select a single best model from among Moy,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R%.
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What should you learn from this lecture?

@ What is regularization? Why do we need it?

@ What are the two basic types of regularization methods? How are they implemented
mathematically in linear regression?

@ How do you fit a ridge regression model in python?

@ How do you control the model flexibility & bias-variance tradeoff when using
regularization?

@ How do you find the right amount of regularization using cross-validation? How do you
do this in python?

e What additional precautions do you need to take when using regularization (compared to
least squares)?

What are the advantages of regularization compared to Least Squares?

What are the advantages of regularization compared to subset selection?

Dr. Zhang (MSU-CMSE) Wed, Oct 8, 2025 5/19



Section 2

Ridge Regression
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Goal

o Fit model using all p predictors

@ Aim to constrain (regularize)
coefficient estimates

@ Shrink the coefficient estimates
towards 0

Y = Bo + B1X1 + B2 Xo + B3 X3 + 5aXa
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Ridge regression
Before: After:
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Example from the Credit data
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Same Setting, Different Plot

Standardized Coefficients
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https://PollEv.com/multiple_choice_polls/78Jh1W85AOsTKvjFHGARH/respond

Scale equivavariance (or lack thereof)

Scale equivariant: Multiplying a variable
by ¢ (cX;) just returns a coefficient
multiplied by 1/c (1/cp;)
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Solution: Standardize predictors

Xij =
\/ Zl 1 X’J Xj)
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Using Cross-Validation to find A

@ Choose a grid of X\ values

e Compute the (k-fold) cross-validation
error for each value of A

@ Select the tuning parameter value A
for which the CV error is smallest.

@ The model is re-fit using all of the
available observations and the
selected value of the tuning
parameter.
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LOOCV choice of X for ridge regression and Credit data
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Coding
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Bias-Variance tradeoff
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Squared bias (black), variance (green), and test
mean squared error (purple) for simulated data.
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More Bias-Variance Tradeoff
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Squared bias (black), variance (green), and test
mean squared error (purple) for simulated data.
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Advantages of Ridge

Ridge vs. Least Squares: Ridge vs. Subset Selection:
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Look back and look ahead
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@ What is regularization? Why do we need it?

@ What are the two basic types of regularization methods?

How are they implemented mathematically in linear
regression?
How do you fit a ridge regression model in python?

How do you control the model flexibility & bias-variance
tradeoff when using regularization?

How do you find the right amount of regularization using
cross-validation? How do you do this in python?

What additional precautions do you need to take when
using regularization (compared to least squares)?

What are the advantages of regularization compared to
Least Squares?

What are the advantages of regularization compared to
subset selection?
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