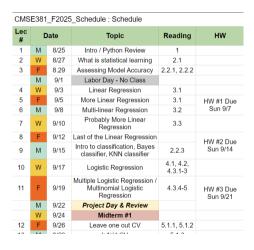
# Ch 2.2.3: Intro to classification Lecture 9 - CMSE 381

Prof. Guanqun Cao


Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, Sep 15, 2025

#### Announcements



#### Last Time:

• Finished Linear Regression

#### **Announcements:**

- Homework #3 Due Sunday Sep 21
- Next Monday Review day
  - Nothing prepped
  - Bring your questions
  - Send your questions (survey)
- Wed 9/24 Exam #1
  - ▶ Bring 8.5×11 sheet of paper
  - Handwritten both sides
  - Anything you want on it, but must be your work
  - ► You will turn it in

### Covered in this lecture

- Ch 2.2.3
- Error rate (classification)
- Bayes Classifier
- K-NN classification

## Section 1

Classification Overview

#### What is classification

Classification: When the response variable is qualitative

- Given feature vector X and qualitative response Y in the set S, the goal is to find a function (classifier) C(X) taking X as input and predicting its value for Y.
- We are more interested in estimating the probabilities that X belongs to each category

## Some examples

- Predict whether a COVID19 vaccine will work on a patient given patient's age
- An online banking service wants to determine whether a transaction being performed is fraudulent on the basis of the user's IP address, past transactions, etc.

## Section 2

Ch 2.2.3: Classification

#### Error rate

- Training data:  $\{(x_1, y_1), \dots, (x_n, y_n)\}$  with  $y_i$  qualitative
- Estimate  $\hat{y} = \hat{f}(x)$
- Indicator variable

Training error rate:

$$\frac{1}{n}\sum_{i=1}^n\mathrm{I}(y_i\neq\hat{y}_i$$

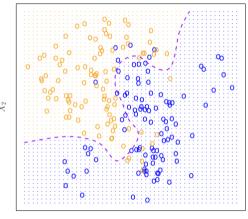
Test error rate:

$$\operatorname{Ave}(\mathrm{I}(y_0\neq\hat{y}_0))$$

#### Best ever classifier

We can't have nice things

#### **Bayes Classifier:**


Give every observation the <u>highest</u> <u>probability</u> class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

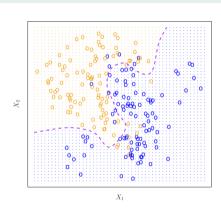
## An example

- Survey students for amount of programming experience, and current GPA
- Try to predict if they will pass CMSE 381.
- If we have a survey of all students that could ever exist, we can determine the probability of failure given combo of those features.

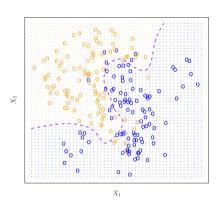
# Bayes decision boundary



 $X_1$ 


## Bayes error rate

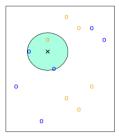
• Error at  $X = x_0$ 


$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$



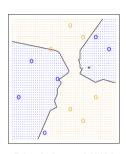

# The game



#### Section 3

K-Nearest Neighbors Classifier

## K-Nearest Neighbors




$$K = 3$$

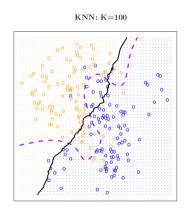
- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

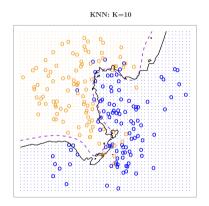
$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$

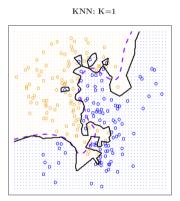
• Pick j with highest value



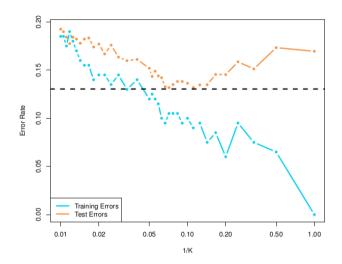
Black line: KNN decision boundary


## Example


Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?




| Point | k = 1 Prediction | k = 3 Prediction |  |  |
|-------|------------------|------------------|--|--|
| Α     |                  |                  |  |  |
| В     |                  |                  |  |  |
| С     |                  |                  |  |  |
|       |                  |                  |  |  |


## Tradeoff







## More on tradeoff



Jupyter notebook

Lec 9

## Next time

#### CMSE381\_F2025\_Schedule : Schedule

| Lec<br># | Date |      | Topic                                                                | Reading              | HW                    |  |  |  |
|----------|------|------|----------------------------------------------------------------------|----------------------|-----------------------|--|--|--|
| 1        | M    | 8/25 | Intro / Python Review                                                | 1                    |                       |  |  |  |
| 2        | W    | 8/27 | What is statistical learning                                         | 2.1                  |                       |  |  |  |
| 3        | F    | 8.29 | Assessing Model Accuracy                                             | 2.2.1, 2.2.2         |                       |  |  |  |
|          | M    | 9/1  | Labor Day - No Class                                                 |                      |                       |  |  |  |
| 4        | W    | 9/3  | Linear Regression                                                    | 3.1                  |                       |  |  |  |
| 5        | F    | 9/5  | More Linear Regression                                               | 3.1                  | HW #1 Due<br>Sun 9/7  |  |  |  |
| 6        | M    | 9/8  | Multi-linear Regression                                              | 3.2                  |                       |  |  |  |
| 7        | W    | 9/10 | Probably More Linear<br>Regression                                   | 3.3                  |                       |  |  |  |
| 8        | F    | 9/12 | Last of the Linear Regression                                        |                      | HW #2 Due<br>Sun 9/14 |  |  |  |
| 9        | М    | 9/15 | Intro to classification, Bayes classifier, KNN classifier            | 2.2.3                |                       |  |  |  |
| 10       | W    | 9/17 | Logistic Regression                                                  | 4.1, 4.2,<br>4.3.1-3 |                       |  |  |  |
| 11       | F    | 9/19 | Multiple Logistic Regression /<br>Multinomial Logistic<br>Regression | 4.3.4-5              | HW #3 Due<br>Sun 9/21 |  |  |  |
|          | M    | 9/22 | Project Day & Review                                                 |                      |                       |  |  |  |
|          | W    | 9/24 | Midterm #1                                                           |                      |                       |  |  |  |
| 12       | F    | 9/26 | Leave one out CV                                                     | 5.1.1, 5.1.2         |                       |  |  |  |
| 40       |      | 0/00 | 1. 6-1-1-007                                                         | F 4 0                |                       |  |  |  |