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Announcements

Last time:
k-fold CV
This lecture:
More k-fold CV

Bias-Variance Tradeoff

CV for classification
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Section 1

k-fold CV
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Approximations of Test Error

LOOCV K-fold CV
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Definition of k-fold CV

@ Randomly split data into k-groups
(folds)

o Approximately equal sized. For the
sake of notation, say each set has ¢
points

@ Remove ith fold U; and reserve for
testing.

@ Train the model on remaining points

o Calculate
MSE; = %Z(XJ,}/])EU;(yj - ),}J)2

@ Rinse and repeat

g (MSU-CMSE)
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Return

k
1
CViy = 5 D_MSE;
i=1
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Comparison with simulated data: Ex 3
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Comparison with simulated data: Ex 1
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Comparison with simulated data: Ex 2
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Takeaways from the examples

Dr. Zhang (MSU-CMSE) Wed, Oct 1, 2025 9/19



Bias-Variance Tradeoff: Bias

E(yo — F(x0))” = Var(F(x0)) + [Bins(F(x0))|” + Var(e)

Dr. Zhang (MSU-CMSE) Wed, Oct 1, 2025 10/19



Bias-Variance Tradeoff: Variance

E(yo — F(x0))” = Var(F(x0)) + [Bins(F(x0))|” + Var(e)

Dr. Zhang (MSU-CMSE) Wed, Oct 1, 2025 11/19



In short: Vadidation vs Test

@ all the time, we are pretending the validation set etc is the test set...

@ when it is not.

Dr. Zhang U-CMS Wed, Oct 1, 2025 12/19



Real-world example: Chekroud et al., Science 383, 164-167 (2024)

RESEARCH

RESEARCH A
NEUROSCIENCE

lllusory generalizability of clinical prediction models

Adam M. Chekroud™?*, Matt Hawrilenko’, Hieronimus Loho?, Julia Bondar', Ralitza Gueorguieva®,
Alkomiet Hasan®, Joseph Kambeitz®, Philip R. Corlett?, Nikolaos Koutsouleris®, Harlan M. Krumholz’,
John H. Krystal?, Martin Paulus®

CLE

It is widely hoped that statistical models can improve decision-making related to medical treatments.
Because of the cost and scarcity of medical outcomes data, this hope is typically based on investigators
observing a model’s success in one or two datasets or clinical contexts. We scrutinized this optimism
by examining how well a machine learning model performed across several independent clinical trials of
antipsychotic medication for schizophrenia. Models predicted patient outcomes with high accuracy
within the trial in which the model was developed but performed no better than chance when applied
out-of-sample. Pooling data across trials to predict outcomes in the trial left out did not improve
predictions. These results suggest that models predicting treatment outcomes in schizophrenia are
highly context-dependent and may have limited generalizability.
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383, 164-167 (2024)

ience

Chekroud et al., Sc

Within-trial
cross-validation

Real-world example

Leave-one-
trial-out

Paired-trial
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Section 2

Using K-Fold CV on Polynomial Linear Regression

Dr. Zhang (MSU-CMSE) Wed, Oct 1, 2025 15/19



Polynomial regression

Replace linear model

Yi = Bo+ frxa+e
Test your understanding: PollEv
with

Vi = Bo+ Bixi + Baxd 4 -+ Bax{ + ¢

MSU-CMSE) Wed, Oct 1, 2025 16 /19


https://PollEv.com/multiple_choice_polls/j44HHKj3HegKkZGrNhfnj/respond

Faking linear regression into doing our work for us

Dr. Zhang (MSU-CMSE) Wed, Oct 1, 2025 17 /19



Coding - Build a plot for train/test scores vs flexibility

Dr. Zhang (MSU-CMSE) Wed, Oct 1, 2025 18/19



Next time
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