

Ch 7.4: Cubic splines

Lecture 23 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, Oct 29, 2025

Announcements

Last time:

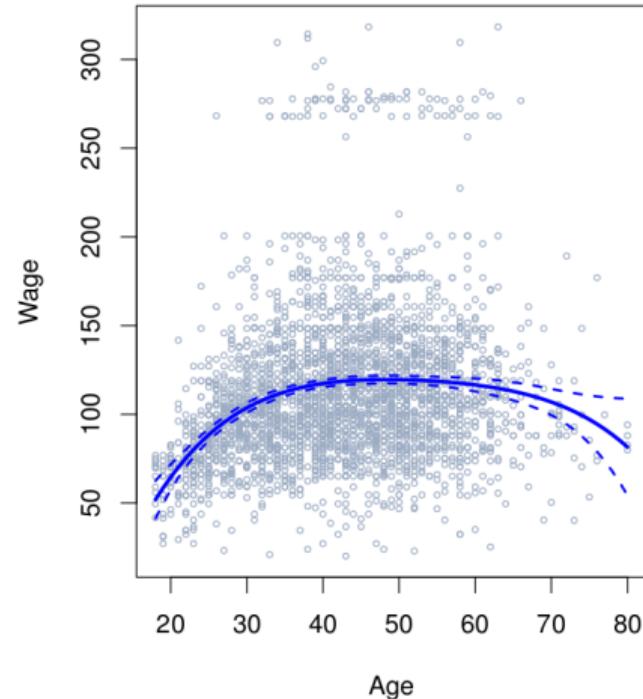
- 7.2 Step functions
- 7.3 Basis functions

This lecture:

- 7.4 Cubic splines

Announcements:

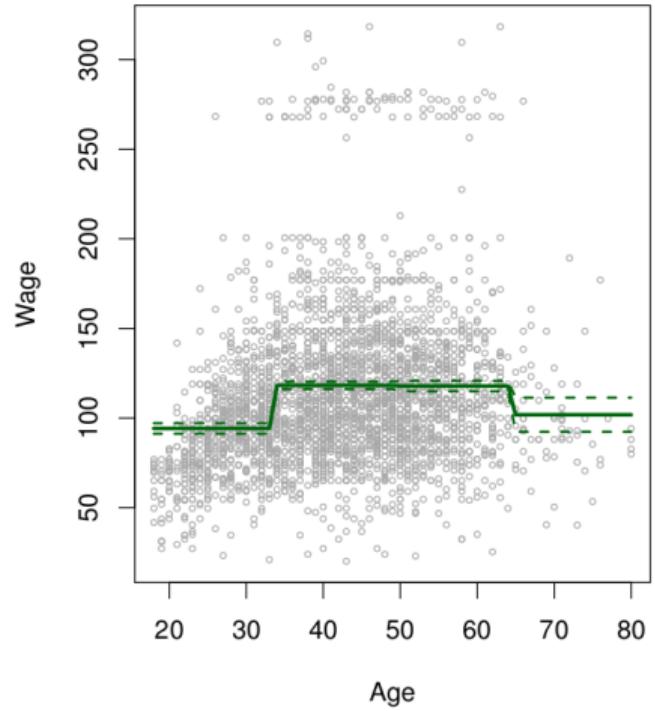
- Homework # 6 is due Sunday.


21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due Sun 10/26
22	M	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	W	10/29	Regression Splines	7.4	
24	F	10/31	Decision Trees	8.1	HW #6 Due Sun 11/2
25	M	11/3	Random Forests	8.2.1, 8.2.2	
26	W	11/5	Maximal Margin Classifier	9.1	
27	F	11/7	SVC	9.2	HW #7 Due Sun 11/9
28	M	11/10	SVM	9.3, 9.4	
29	W	11/12	Single Layer NN	10.1	
30	F	11/13	Multi Layer NN	10.2	HW #8 Due Sun 11/16
31	M	11/17	CNN	10.3	
32	W	11/19	Unsupervised learning / clustering	12.1, 12.4	
33	F	11/21	Review		HW #9 Due Sun 11/23
	M	11/24	Midterm #3		
	W	11/26	Virtual: Project Office Hours		
	F	11/28	Thanksgiving		
	M	12/1	Virtual: Project Office Hours		
	W	12/3	Virtual: Project Office Hours		
	F	12/5			Project Due
	M	12/8			
	W	12/10			
	F	12/12	No final exam		Honors Project Due

Section 1

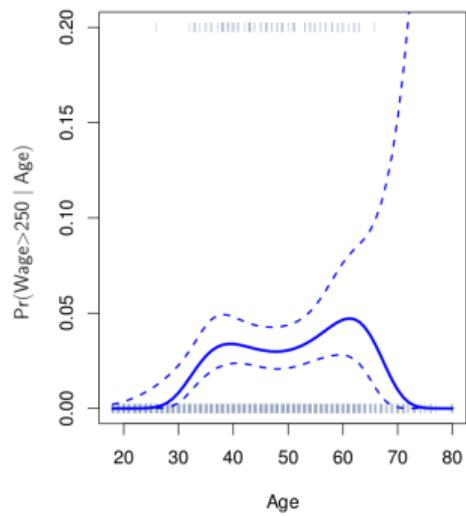
Previously

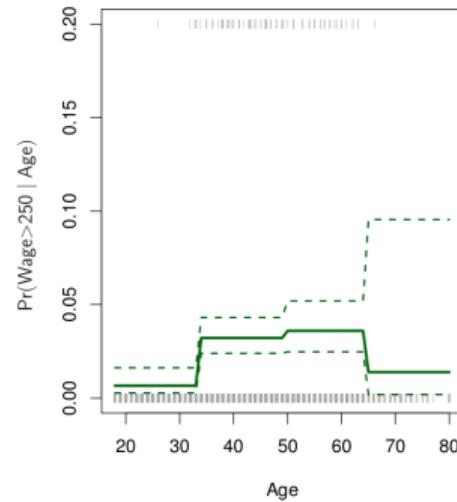
Polynomial regression


$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \cdots + \beta_d x_i^d + \varepsilon_i$$

Step function regression

$$\begin{aligned}C_0(X) &= I(X < c_1), \\C_1(X) &= I(c_1 \leq X < c_2), \\C_2(X) &= I(c_2 \leq X < c_3), \\&\vdots \\C_{K-1}(X) &= I(c_{K-1} \leq X < c_K), \\C_K(X) &= I(c_K \leq X),\end{aligned}$$


$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i) + \varepsilon_i$$


Classification version

$$\Pr(y_i > 250 \mid x_i) =$$

$$\frac{\exp(\beta_0 + \beta_1 x_i + \cdots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \cdots + \beta_d x_i^d)}$$

$$\frac{\exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i))}{1 + \exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i))}$$

Basis Functions Setup

Polynomial and piecewise-constant regression models are special cases of a *basis function* approach.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_K b_K(x_i) + \varepsilon_i$$

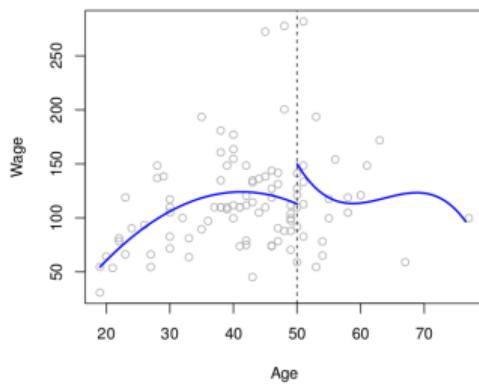
What will you learn today?

- How to define cubic splines mathematically in terms of piecewise polynomials? (review)
 - ▶ Write the equations for the model on each interval between knots.
 - ▶ Write the continuity constraints (function, first and second derivatives) at each knot.
 - ▶ Compute the total degrees of freedom.
- How to define cubic splines in terms of basis functions?
 - ▶ Describe them mathematically using the truncated power basis (textbook version).
 - ▶ Visualize them as B-spline basis functions (e.g., in Python / scikit-learn).
- How to fit a cubic spline model to data in Python?
- How to change the model flexibility?
 - ▶ What are the relevant metaparameters?
 - ▶ How to choose appropriate flexibility?
- What precautions must you take at the outer boundary? Why?

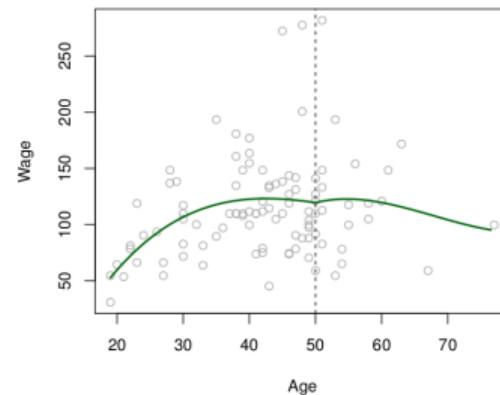
Section 2

Regression Splines

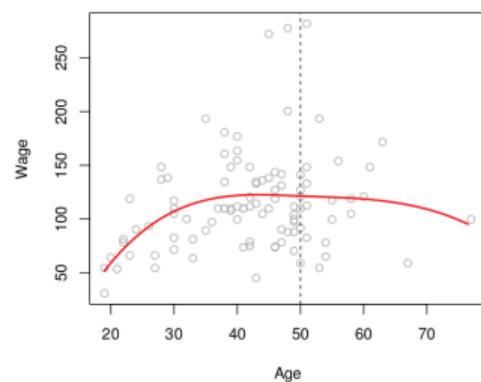
Piecewise polynomials


- Fit a polynomial regression

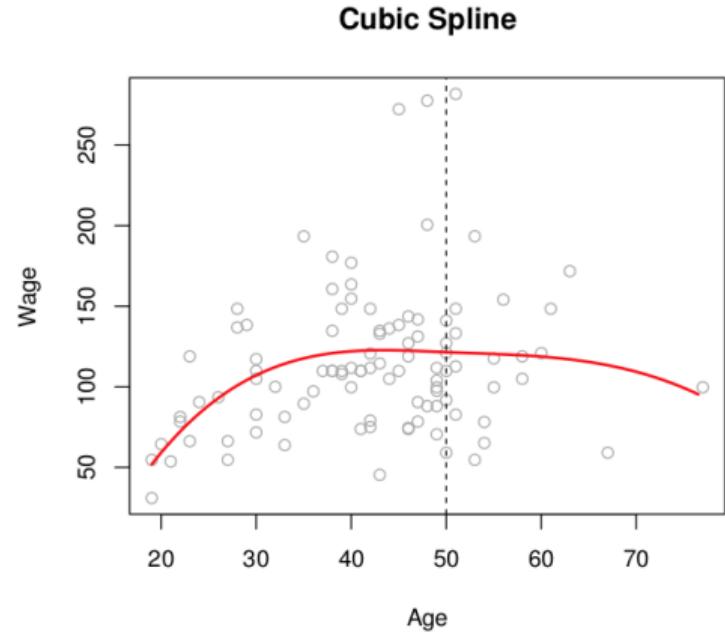
$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \cdots + \beta_d x_i^d + \varepsilon_i$$


- Let the β_i 's be different at different locations of the range.

Building up to cubic splines


Piecewise Cubic

Continuous Piecewise Cubic


Cubic Spline

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \geq c. \end{cases}$$

Cubic splines: degrees of freedom

$$f(x) = \begin{cases} \beta_0^1 + \beta_1^1 x + \beta_2^1 x^2 + \beta_3^1 x^3 & x < c \\ \beta_0^2 + \beta_1^2 x + \beta_2^2 x^2 + \beta_3^2 x^3 & x > c \end{cases}$$

Spline basis representation

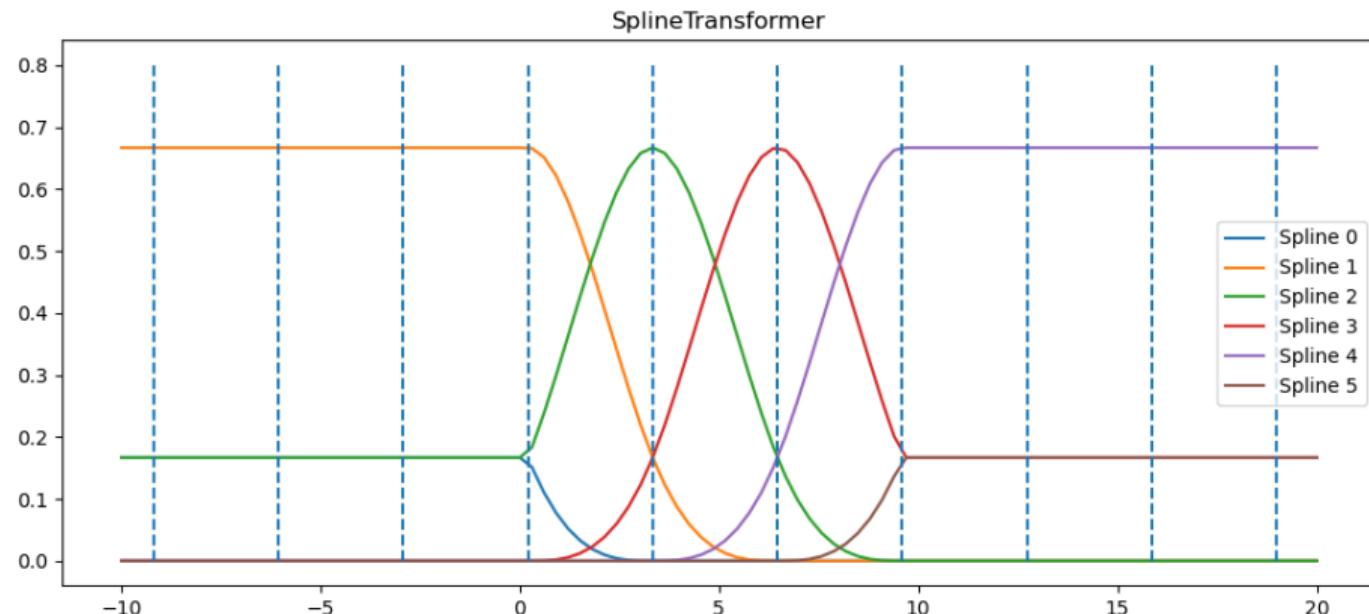
Want to pick b_i so that we represent a cubic spline with K knots as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_{K+3} b_{K+3}(x_i) + \varepsilon_i$$

Version 1: Truncated power basis function

$$h(x, z) = (x - z)_+^3 = \begin{cases} (x - z)^3 & \text{if } x > z \\ 0 & \text{else} \end{cases}$$

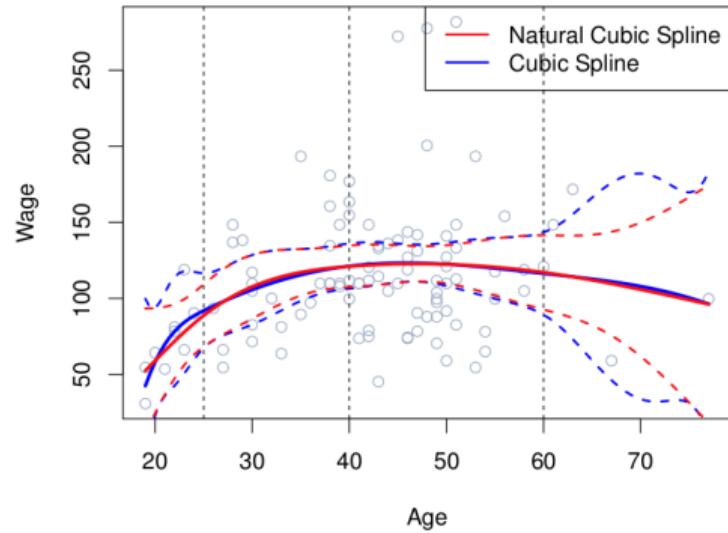
Desmos link: <https://www.desmos.com/calculator/ahllu5gclar>

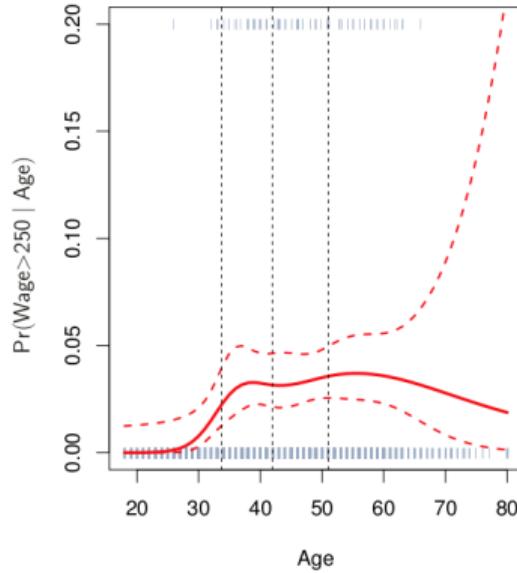
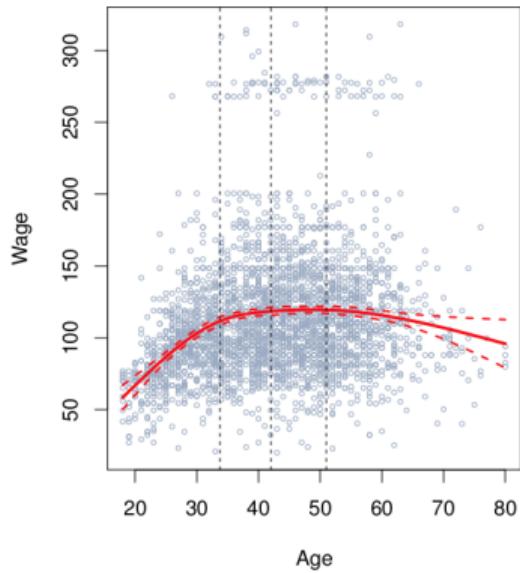

The (book) basis for cubic splines

Given knots at z_1, \dots, z_K

- X
- X^2
- X^3
- $h(X, z_1)$
- $h(X, z_2)$
- \vdots
- $h(X, z_K)$

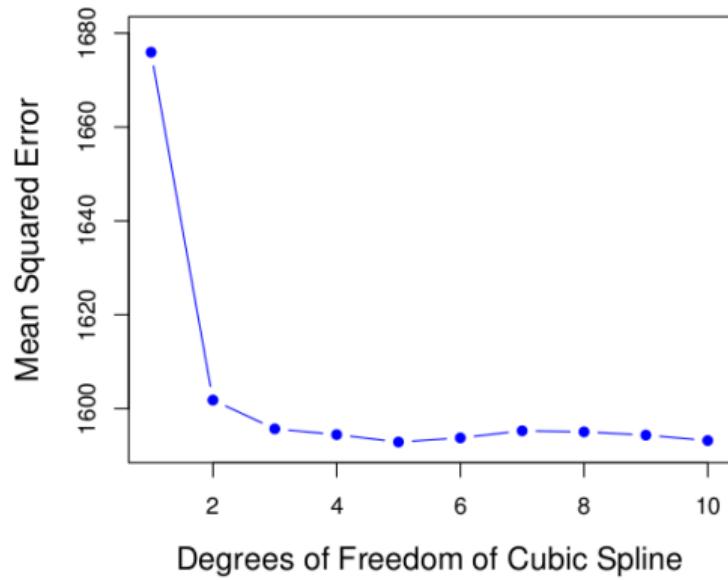
$$f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 h(X, z_1) + \beta_5 h(X, z_2) + \dots + \beta_{k+3} h(X, z_K)$$


Version 2: B-spline basis function

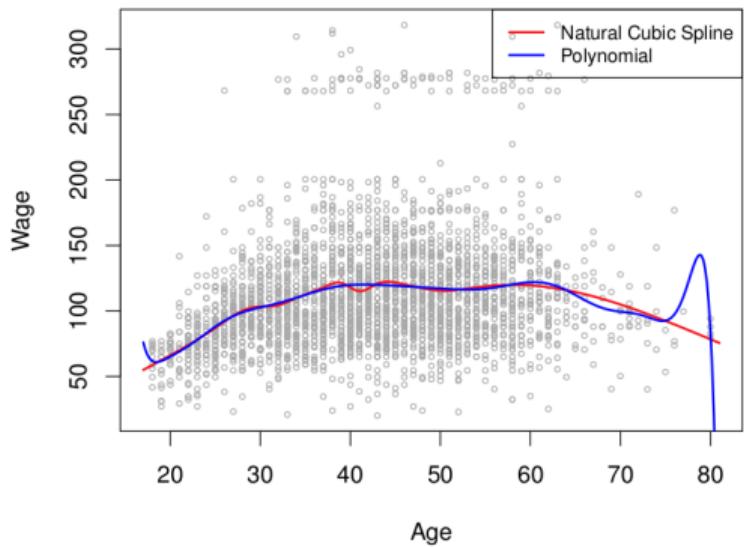


Test your understanding: [PollEv](#)

Coding example

Notes on cubic splines



Where to put the knots?



How many knots to use?

When in doubt, Cross-Validate.

Cubic splines vs Polynomial Regression

Next time

21	F	10/24	Polynomial & Step Functions	7.1-7.2	
22	M	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	HW #5 Due Sun 10/26
23	W	10/29	Regression Splines	7.4	
24	F	10/31	Decision Trees	8.1	HW #6 Due Sun 11/2
25	M	11/3	Random Forests	8.2.1, 8.2.2	
26	W	11/5	Maximal Margin Classifier	9.1	
27	F	11/7	SVC	9.2	HW #7 Due Sun 11/9
28	M	11/10	SVM	9.3, 9.4	
29	W	11/12	Single Layer NN	10.1	
30	F	11/13	Multi Layer NN	10.2	HW #8 Due Sun 11/16
31	M	11/17	CNN	10.3	
32	W	11/19	Unsupervised learning / clustering	12.1, 12.4	
33	F	11/21	Review		HW #9 Due Sun 11/23
	M	11/24	Midterm #3		
	W	11/26	Virtual: Project Office Hours		
	F	11/28	Thanksgiving		
	M	12/1	Virtual: Project Office Hours		
	W	12/3	Virtual: Project Office Hours		
	F	12/5			Project Due
	M	12/8			
	W	12/10			
	F	12/12	No final exam		Honors Project Due