Ch 6.2: Shrinkage - The Lasso

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Fri, Oct 10, 2025

Announcements

Last time:

Ridge Regression

This time:

The Lasso

Announcements:

- HW4 due Sunday
- HW5 released
- Think about the project, choose partner in crime
- Midterm 3 date change to Mon 11/24!! See updated Schedule
- Study guide and code portfolio online.
 Bonus assignment will be on D2L.

CMSF381 F2025 Schedule : Schedule

	M	9/22	Project Day & Review		
	W	9/24	Midterm #1		
12	F	9/26	Leave one out CV	5.1.1, 5.1.2	
13	М	9/29	k-fold CV	5.1.3	
14	W	10/1	More k-fold CV	5.1.4-5	
15	F	10/3	k-fold CV for classification	5.1.5	
16	М	10/6	Subset selection	6.1	
17	W	10/8	Shrinkage: Ridge	6.2.1	
18	F	10/10	Shrinkage: Lasso	6.2.2	HW #4 Due Sun 10/12
19	М	10/13	PCA	6.3	
20	W	10/15	PCR	6.3	
	F	10/17	Review		
	М	10/20	Fall Break		
	W	10/22	Midterm #2		
21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due Sun 10/28
22	М	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	W	10/29	Regression Splines	7.4	

Zhang (MSU-CMSE) Fri, Oct 10, 2025 2/21

What should you learn from the previous and this lecture?

- What is regularization? Why do we need it?
- What are the two basic types of regularization methods? How are they implemented mathematically in linear regression? Why are they also called Shrinkage methods?
- How do you fit a Lasso regression model in python?
- How do you control the model flexibility & bias-variance tradeoff when using regularization?
- How do you find the right amount of regularization using cross-validation? How do you do this in python?
- What additional precautions do you need to take when using regularization (compared to least squares)?
- When do you choose one Shrinkage method over another?

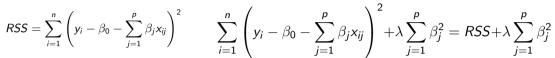
Dr. Zhang (MSU-CMSE) Fri, Oct 10, 2025

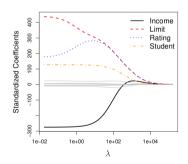
Section 1

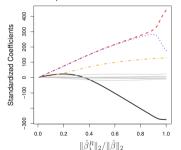
Last time - Ridge Regression

Goal

- Fit model using all p predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0


$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$


Ridge regression


Before:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$\sum_{i=1}^{n} \left(y_i \right)$$

6/21

Fri. Oct 10, 2025

Scale equivariance (or lack thereof)

Scale equivariant: Multiplying a variable by c (cX_i) just returns a coefficient multiplied by 1/c ($1/c\beta_i$)

Solution: standardize predictors

$$\widetilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}}$$

- Least squares is scale equivariant
- Ridge regression is not

Section 2

The Lasso

Same goal as before

- Fit model using all *p* predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

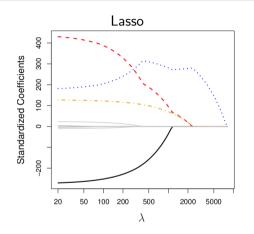
The lasso

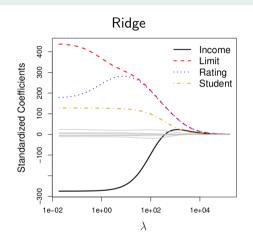
Least Squares:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

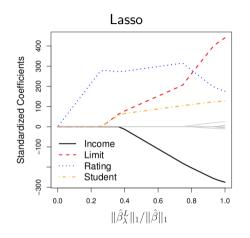
Ridge:

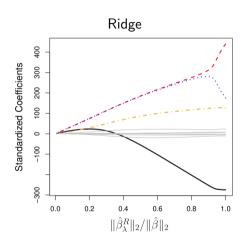
$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \qquad \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$


The Lasso:

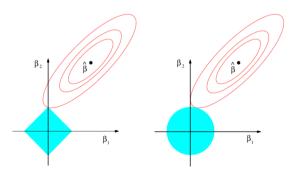

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Subsets with lasso


$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

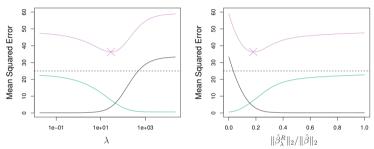

An example on Credit data set

More example on Credit data set



Why the hell lasso can select variable (while ridge cannot)?

Alternative formulation of lasso & ridge regression (play more with ℓ_p)

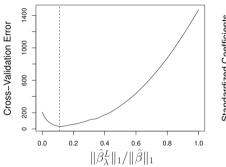

$$\min_{eta} \sum (y_i - \hat{y}_i)^2$$
 where $\sum |eta_j| \leq s$

$$\min_{eta} \sum (y_i - \hat{y}_i)^2$$
 where $\sum |eta_j|^2 \leq s$

Dr. Zhang (MSU-CMSE)

Bias-Variance tradeoff

Squared bias (black), variance (green), and test mean squared error (purple) for simulated data.


Test your understanding: PollEv

Dr. Zhang (MSU-CMSE) Fri, Oct 10, 2025

Using Cross-Validation to find λ

- ullet Choose a grid of λ values
- Compute the (k-fold) cross-validation error for each value of λ
- Select the tuning parameter value λ for which the CV error is smallest.
- The model is re-fit using all of the available observations and the selected value of the tuning parameter.

10-fold CV choice of λ for lasso and simulated data

17 / 21

Dr. Zhang (MSU-CMSE) Fri, Oct 10, 2025

Coding example

Dr. Zhang (MSU-CMSE)

Ridge vs Lasso

Ridge Regression:

Lasso:

TL;DR - Original forumlation

Least Squares:

Ridge:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \qquad \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

The Lasso:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Next time

CMSE381_F2025_Schedule : Schedule

	M	9/22	Project Day & Review		
	W	9/24	Midterm #1		
12	F	9/26	Leave one out CV	5.1.1, 5.1.2	
13	М	9/29	k-fold CV	5.1.3	
14	W	10/1	More k-fold CV	5.1.4-5	
15	F	10/3	k-fold CV for classification	5.1.5	
16	М	10/6	Subset selection	6.1	
17	W	10/8	Shrinkage: Ridge	6.2.1	
18	F	10/10	Shrinkage: Lasso	6.2.2	HW #4 Due
19	М	10/13	PCA	6.3	Sun 10/12
20	W	10/15	PCR	6.3	
	F	10/17	Review		
	М	10/20	Fall Break		
	W	10/22	Midterm #2		
21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due Sun 10/28
22	М	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	
23	W	10/29	Regression Splines	7.4	

r. Zhang (MSU-CMSE) Fri, Oct 10, 2025