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Announcements

Last time:

9.2 Support Vector
Classifier

This lecture:

9.3 Support Vector Machine

Announcements:

HW #8 due Sunday 11/16
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Section 1

Last Time
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Classification Setup

Data matrix:

X =


− xT1 −
− xT2 −

...
− xTn −


n×p

x1 =

x11
...

x1p

 , · · · , xn =

xn1
...

xnp



Observations in one of two classes,
yi ∈ {−1, 1}

Y =


y1
y2
...
yn



Separate out a test observation

x∗ = (x∗1 · · · x∗p )T

Dr. Cao (MSU-CMSE) Monday, Nov 10, 2025 4 / 28



Hyperplane becomes a classifier

If you have a separating hyperplane:

Check

f (x∗) = β0+β1x
∗
1 +β2x

∗
2 + · · ·+βpx

∗
p

If positive, assign ŷ = 1

If negative, assign ŷ = −1
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How do we pick? Old version
Maximal margin classifier

For a hyperplane, the margin is the
smallest distance from any data point
to the hyperplane.

Observations that are closest are
called support vectors.

The maximal margin hyperplane is
the hyperplane with the largest
margin

The classifier built from this
hyperplane is the maximal margin
classifier.
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Issues

No separating hyperplane
exists

Choice of hyperplane is sensitive to new points
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Support Vector Classifier

Test your understanding in PollEv!
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Two formulations side by side

Maximal Margin Classifier

Support Vector Classifier
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So many variables

C is nonnegative tuning parameter

M is the width of the margin

ε1, · · · , εn are slack variables allowing observations
to go to the other side
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Limiting factor of SVC
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Section 2

Support Vector Machine
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Example of using more features

Want 2p features:

X1,X
2
1 ,X2,X

2
2 , · · · ,Xp,X

2
p

Optimization becomes:
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Kernels

yi f (xi ) ≥ M(1− ϵi )
f (xi ) should give you some more general
way of talking about how far is point xi
away from the decision boundary.
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Inner products

⟨a, b⟩ =
r∑

i=1

aibi
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Quick computations

What are the following?

⟨(1, 1), (0, 3)⟩
⟨(1, 1), (3, 2)⟩
⟨(2, 3), (0, 3)⟩
⟨(2, 3), (3, 2)⟩
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SVC via inner products

f (x) = β0 +
n∑

i=1

αi ⟨x , xi ⟩

f (x) = β0 +
∑
i∈S

αi ⟨x , xi ⟩
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Example

−2
√
2 +

√
2

2
X1 +

√
2

2
X2 = 0

−2
√
2 +

√
2

18
⟨(X1,X2), (0, 3)⟩+

√
2

6
⟨(X1,X2), (3, 2)⟩ = 0
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The kernel

K (xi , x
′
i )

f (x) = β0 +
∑
i∈S

αiK (x , xi )
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A polynomial kernel

K (xi , xi ′) =

1 +

p∑
j=1

xijxi ′j

d
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A radial kernel

K (xi , x
′
i ) = exp

−γ

p∑
j=1

(xij − xi ′j)
2


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Support Vector Machine

f (x) = β0 +
∑
i∈S

αiK (x , xi )
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Coding
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Section 3

SVM with more than two classes
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One-Vs-One Classification
Also called all-pairs
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One-Vs-All Classification
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TL;DR

f (x) = β0 +
∑
i∈S

αiK (x , xi )

Kernels

Linear

K(xi , xi′) =

p∑
j=1

xijxi′j

Polynomial

K(xi , xi′) =

(
1 +

p∑
j=1

xijxi′j

)d

Radial

K(xi , x
′
i ) = exp

(
−γ

p∑
j=1

(xij − xi′j)
2

)

Dr. Cao (MSU-CMSE) Monday, Nov 10, 2025 27 / 28



Next time

Q of the day:
Why would you want to use SVM rather than SVC?
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