Ch 6.3: Dimension Reduction - PCA Lecture 19 - CMSE 381

Prof. Mengsen Zhang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, Oct 13, 2025

Announcements

Last time:

Shrinkage: Ridge and Lasso

This lecture:

PCA

Announcements:

- Exam #2 next week! Submit you questions by Thursday (10.16) 5 pm.
 - ▶ Bring 8.5×11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - ► Non-internet calculator
- Project: by Exam # 2
 - project partner, ideas about what method to use

12	F	9/26	Leave one out CV	5.1.1, 5.1.2	
13	M	9/29	k-fold CV	5.1.3	
14	W	10/1	More k-fold CV	5.1.4-5	
15	F	10/3	k-fold CV for classification	5.1.5	
16	M	10/6	Subset selection	6.1	
17	W	10/8	Shrinkage: Ridge	6.2.1	
18	F	10/10	Shrinkage: Lasso	6.2.2	HW #4 Due
19	M	10/13	PCA	6.3	Sun 10/12
20	W	10/15	PCR	6.3	
	F	10/17	Review		
	M	10/20	Fall Break		
	W	10/22	Midterm #2		
21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due
22	М	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	Sun 10/26

Section 1

Last time

Goal

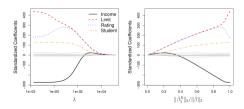
- Fit model using all p predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

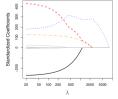
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

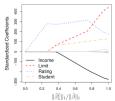
Shrinkage

Find β to minimize:

Least Squares:


$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$


Ridge:


$$\mathit{RSS} + \sum_{j=1}^p \beta_j^2$$

The Lasso:

$$RSS + \sum_{j=1}^p |\beta_j|$$

What will you learn from this lecture?

- How to create new variables as linear combinations of the original predictors?
- Why do we need Principal Component Analysis (PCA)? What is the main purpose of using it?
- What is a principal component (PC)?
- What does the first PC maximize? You should be able to explain this both geometrically in a plot and mathematically.
- Similarly, what do the subsequent PCs maximize?
- How do you compute the PCs in Python, given a dataset?
- How do you project data points on each PC? You should also be able to plot the data points in the PC space.
- How do you find out how much variance each PC explains?

Dr. Zhang (MSU-CMSE)

Mon, Oct 13, 2025

Section 2

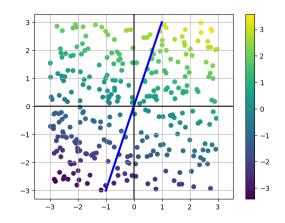
Dimension Reduction

Linear transformation of predictors

Original Predictors:

$$X_1, \cdots, X_p$$

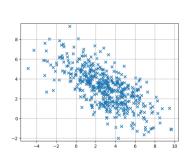
New Predictors:

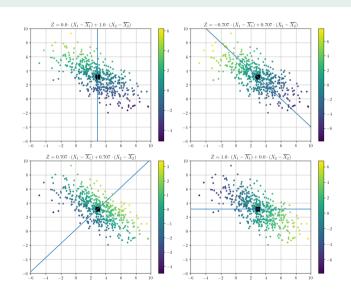

$$Z_1, \cdots, Z_M$$

$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$

An example or two

Geometric interpretation

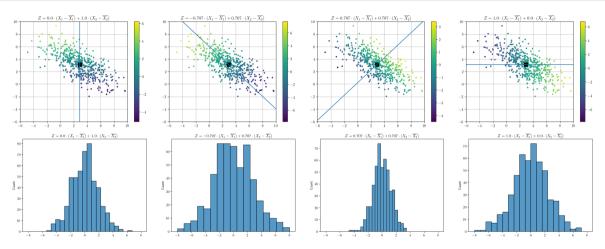

• projection on a line



10 / 24

. Zhang (MSU-CMSE) Mon, Oct 13, 2025

Different projections

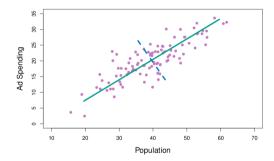


11 / 24

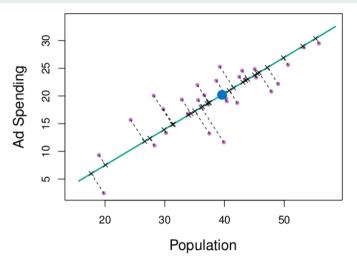
Zhang (MSU-CMSE) Mon, Oct 13, 2025

Histograms of Z values

The goal

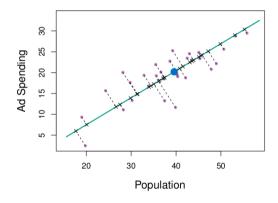

- Find good φ 's for some $M \ll p$
- Fit regression model on Z_i's using least squares

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \varepsilon_i$$


Section 3

PCA

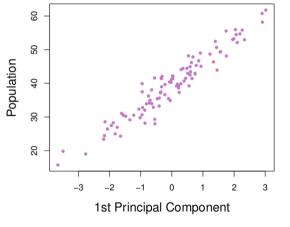
An example dataset

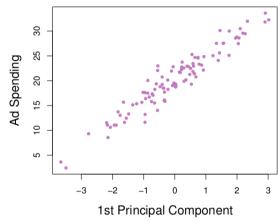

Projection onto first PC

$$Z_1 = 0.839 \cdot (pop - \overline{pop}) + 0.544 \cdot (ad - \overline{ad})$$

. Zhang (MSU-CMSE) Mon, Oct 13, 2025

What does it mean to have the highest variance

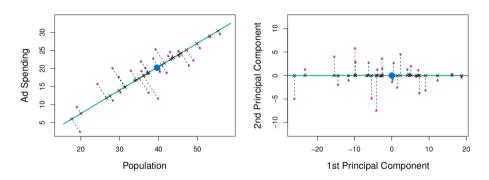



Toy for learning PCA

https://www.desmos.com/calculator/gvmq07pg1k

Test your understanding: PollEv

Principal component scores

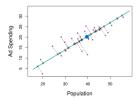


19 / 24

$$z_{i1} = 0.839 \cdot (\text{pop}_i - \overline{\text{pop}}) + 0.544 \cdot (\text{ad}_i - \overline{\text{ad}})$$

r. Zhang (MSU-CMSE) Mon, Oct 13, 2025

Another view


The other principal components

Do PCA with Penguins

TL;DR

PCA

- Unsupervised dimensionality reduction
- Choose component Z₁ in the direction of most variance using only X_i's information
- Choose Z₂ and beyond by the same method after "getting rid" of info in the directions already explained

Next time

12	F	9/26	Leave one out CV	5.1.1, 5.1.2	
13	М	9/29	k-fold CV	5.1.3	
14	W	10/1	More k-fold CV	5.1.4-5	
15	F	10/3	k-fold CV for classification	5.1.5	
16	М	10/6	Subset selection	6.1	
17	W	10/8	Shrinkage: Ridge	6.2.1	
18	F	10/10	Shrinkage: Lasso	6.2.2	HW #4 Due
19	М	10/13	PCA	6.3	Sun 10/12
20	W	10/15	PCR	6.3	
	F	10/17	Review		
	М	10/20	Fall Break		
	W	10/22	Midterm #2		
21	F	10/24	Polynomial & Step Functions	7.1-7.2	HW #5 Due Sun 10/26
22	М	10/27	Step Functions; Basis functions; Start Splines	7.2-7.4	