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Announcements

Last time:

Shrinkage: Ridge and Lasso

This lecture:

PCA

Announcements:

Exam #2 next week! Submit you questions by
Thursday (10.16) 5 pm.

▶ Bring 8.5x11 sheet of paper
▶ Handwritten both sides
▶ Anything you want on it, but must be your work
▶ You will turn it in
▶ Non-internet calculator

Project: by Exam # 2
▶ project partner, ideas about what method to use
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https://forms.office.com/r/c5LNyeffiK


Section 1

Last time
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Goal

Fit model using all p predictors

Aim to constrain (regularize)
coefficient estimates

Shrink the coefficient estimates
towards 0

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4
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Shrinkage

Find β to minimize:

Least Squares:

RSS =
n∑

i=1

(yi − ŷi )
2

Ridge:

RSS +

p∑
j=1

β2
j

The Lasso:

RSS +

p∑
j=1

|βj |
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What will you learn from this lecture?

How to create new variables as linear combinations of the original predictors?

Why do we need Principal Component Analysis (PCA)? What is the main purpose of
using it?

What is a principal component (PC)?

What does the first PC maximize? You should be able to explain this both geometrically
in a plot and mathematically.

Similarly, what do the subsequent PCs maximize?

How do you compute the PCs in Python, given a dataset?

How do you project data points on each PC? You should also be able to plot the data
points in the PC space.

How do you find out how much variance each PC explains?
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Section 2

Dimension Reduction
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Linear transformation of predictors

Original Predictors:

X1, · · · ,Xp

New Predictors:

Z1, · · · ,ZM

Zm =

p∑
j=1

φjmXj
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An example or two
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Geometric interpretation

projection on a line
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https://www.geogebra.org/graphing/gucrrevt


Different projections
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Histograms of Z values
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The goal

Find good φ’s for some M ≪ p

Fit regression model on Zi ’s using
least squares

yi = θ0 +
M∑

m=1

θmzim + εi
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Section 3

PCA
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An example dataset
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Projection onto first PC

Z1 = 0.839 · (pop− pop) + 0.544 · (ad− ad)
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What does it mean to have the highest variance
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Toy for learning PCA

https://www.desmos.com/

calculator/gvmq07pg1k Test your understanding: PollEv
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https://www.desmos.com/calculator/gvmq07pg1k
https://www.desmos.com/calculator/gvmq07pg1k
https://PollEv.com/multiple_choice_polls/f9LvPNtkmHk7S4JhAGejR/respond


Principal component scores

zi1 = 0.839·(popi−pop)+0.544·(adi−ad)
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Another view
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The other principal components
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Do PCA with Penguins
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TL;DR

PCA

Unsupervised dimensionality
reduction

Choose component Z1 in the
direction of most variance using only
Xi ’s information

Choose Z2 and beyond by the same
method after “getting rid” of info in
the directions already explained
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Next time
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