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Announcements

Last time:
k-fold CV
This lecture:
More k-fold CV

Bias-Variance Tradeoff

CV for classification

Announcements:

Exam 1 feedback sent
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Midterm #1
Leave one out CV 51.1,51.2
k-fold CV 5.1.3
More k-fold CV 5.1.4-5
k-fold CV for classification 515
Subset selection 6.1
Shrinkage: Ridge 6.2.1
Shrinkage: Lasso 6.2.2
PCA 6.3
PCR 6.3
Review
Fall Break
Midterm #2

Polynomial & Step Functions ~ 7.1-7.2

Step Functions; Basis
functions; Start Splines

Regression Splines 74

7.2-T4
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Section 1

k-fold CV
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Approximations of Test Error

LOOCV K-fold CV
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Definition of k-fold CV

@ Randomly split data into k-groups

232010 1 41927 1416 0 5 8 132128 2 6 11122629 172524 7 18 3 2215 9

o Approximately equal sized. For the ~ [——
sake of notation, say each set has ¢
points

@ Remove ith fold U; and reserve for
testing. Return

@ Train the model on remaining points

k
1
° Calculate1 , Vi = P E MSE;
MSE; = 7 > (x.ypeu (i — %) =1

@ Rinse and repeat
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Comparison with simulated data: Ex 3
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Comparison with simulated data: Ex 1
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Comparison with simulated data: Ex 2
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Takeaways from the examples
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Bias-Variance Tradeoff: Bias

E(yo — F(x0))” = Var(F(x0)) + [Bins(F(x0))|” + Var(e)
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Bias-Variance Tradeoff: Variance

E(yo — F(x0))” = Var(F(x0)) + [Bins(F(x0))|” + Var(e)
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In short: Vadidation vs Test

@ all the time, we are pretending the validation set etc is the test set...

@ when it is not.
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Real-world example: Chekroud et al., Science 383, 164-167 (2024)

RESEARCH

RESEARCH A
NEUROSCIENCE

lllusory generalizability of clinical prediction models

Adam M. Chekroud™?*, Matt Hawrilenko’, Hieronimus Loho?, Julia Bondar', Ralitza Gueorguieva®,
Alkomiet Hasan®, Joseph Kambeitz®, Philip R. Corlett?, Nikolaos Koutsouleris®, Harlan M. Krumholz’,
John H. Krystal?, Martin Paulus®

CLE

It is widely hoped that statistical models can improve decision-making related to medical treatments.
Because of the cost and scarcity of medical outcomes data, this hope is typically based on investigators
observing a model’s success in one or two datasets or clinical contexts. We scrutinized this optimism
by examining how well a machine learning model performed across several independent clinical trials of
antipsychotic medication for schizophrenia. Models predicted patient outcomes with high accuracy
within the trial in which the model was developed but performed no better than chance when applied
out-of-sample. Pooling data across trials to predict outcomes in the trial left out did not improve
predictions. These results suggest that models predicting treatment outcomes in schizophrenia are
highly context-dependent and may have limited generalizability.
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383, 164-167 (2024)

ience

Chekroud et al., Sc

Within-trial
cross-validation

Real-world example

Leave-one-
trial-out

Paired-trial
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Section 2

Using K-Fold CV on Polynomial Linear Regression
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Polynomial regression

Replace linear model
yi = Po+ Bixa+ &
with

Vi = Bo+ Bixi + Baxd 4 -+ Bax{ + ¢
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Faking linear regression into doing our work for us
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Coding - Build a plot for train/test scores vs flexibility
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Next time
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