Ch 2.2.3: Intro to classification Lecture 9 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds, Sep 18, 2023

### Announcements

| Lec<br># | Date |      |                                                                                      | Reading              | нพ                    |
|----------|------|------|--------------------------------------------------------------------------------------|----------------------|-----------------------|
| 1        | Mon  | 8/26 | Intro / First day stuff /<br>Python Review Pt 1                                      | 1                    |                       |
| 2        | Wed  | 8/28 | What is statistical learning?                                                        | 2.1                  |                       |
| 3        | Wed  | 9/4  | Assessing Model Accuracy                                                             | 2.2.1,<br>2.2.2      |                       |
| 4        | Fri  | 9/6  | Linear Regression                                                                    | 3.1                  | HW #1 Due             |
| 5        | Mon  | 9/9  | More Linear Regression                                                               | 3.1                  | Sun 9/8               |
| 6        | Wed  | 9/11 | Multi-linear regression                                                              | 3.2                  |                       |
| 7        | Fri  | 9/13 | Probably more linear<br>regression                                                   | 3.3                  | Hw #2 Due             |
| 8        | Mon  | 9/16 | Last of the linear<br>regression                                                     |                      | Dun 9/15              |
| 9        | Wed  | 9/18 | Intro to classification,<br>Bayes classifier, KNN<br>classifier                      | 2.2.3                |                       |
| 10       | Fri  | 9/20 | Logistic Regression                                                                  | 4.1, 4.2,<br>4.3.1-3 |                       |
| 11       | Mon  | 9/23 | Multiple Logistic<br>Regression / Multinomial<br>Logistic Regression<br>/Project day | 4.3.4-5              | Hw #3 Due<br>Sun 9/22 |
|          | Wed  | 9/25 | Review                                                                               |                      |                       |
|          | Fri  | 9/27 | Midterm #1                                                                           |                      |                       |

#### Last Time:

- Finished Linear Regression
  Announcements:
- Homework #3 Due Sunday Sep 22
- Next Wednesday Review day
  - Nothing prepped
  - Bring your questions
- Friday 9/27 Exam #1
  - ▶ Bring 8.5×11 sheet of paper
  - Handwritten both sides
  - Anything you want on it, but must be your work
  - You will turn it in

- Ch 2.2.3
- Error rate (classification)
- Bayes Classifier
- K-NN classification

# Section 1

## **Classification Overview**

Classification: When the response variable is qualitative

- Given feature vector X and qualitative response Y in the set S, the goal is to find a function (classifier) C(X) taking X as input and predicting its value for Y.
- We are more interested in estimating the probabilities that X belongs to each category

- Predict whether a COVID19 vaccine will work on a patient given patient's age
- An online banking service wants to determine whether a transaction being performed is fraudulent on the basis of the user's IP address, past transactions, etc.

### Section 2

### Ch 2.2.3: Classification

### Error rate

#### Training error rate:

- Training data:
  - $\{(x_1, y_1), \cdots, (x_n, y_n)\}$  with  $y_i$  qualitative
- Estimate  $\hat{y} = \hat{f}(x)$
- Indicator variable



Test error rate:

 $\operatorname{Ave}(\operatorname{I}(y_0\neq \hat{y}_0))$ 

### Best ever classifier

We can't have nice things

#### **Bayes Classifier:**

Give every observation the highest probability class given its predictor variables

 $\Pr(Y = j \mid X = x_0)$ 

- Survey students for amount of programming experience, and current GPA
- Try to predict if they will pass CMSE 381.
- If we have a survey of all students that could ever exist, we can determine the probability of failure given combo of those features.

### Bayes decision boundary



 $X_1$ 

#### Bayes error rate

• Error at 
$$X = x_0$$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

• Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$



 $X_1$ 

# The game

### Section 3

### K-Nearest Neighbors Classifier

## K-Nearest Neighbors



- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}(x_0)} I(y_i = j)$$



• Pick *j* with highest value

Black line: KNN decision boundary

### Example

Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?



|       | k = 1      | k = 3      |
|-------|------------|------------|
| Point | Prediction | Prediction |
| A     |            |            |
| В     |            |            |
| С     |            |            |

### Tradeoff



### More on tradeoff



### Jupyter notebook

### Next time

| Lec<br># | Date |      |                                                                                      | Reading              | HW                    |
|----------|------|------|--------------------------------------------------------------------------------------|----------------------|-----------------------|
| 1        | Mon  | 8/26 | Intro / First day stuff /<br>Python Review Pt 1                                      | 1                    |                       |
| 2        | Wed  | 8/28 | What is statistical learning?                                                        | 2.1                  |                       |
| 3        | Wed  | 9/4  | Assessing Model Accuracy                                                             | 2.2.1,<br>2.2.2      |                       |
| 4        | Fri  | 9/6  | Linear Regression                                                                    | 3.1                  | HW #1 Due<br>Sun 9/8  |
| 5        | Mon  | 9/9  | More Linear Regression                                                               | 3.1                  |                       |
| 6        | Wed  | 9/11 | Multi-linear regression                                                              | 3.2                  |                       |
| 7        | Fri  | 9/13 | Probably more linear<br>regression                                                   | 3.3                  | Hw #2 Due<br>Dun 9/15 |
| 8        | Mon  | 9/16 | Last of the linear<br>regression                                                     |                      |                       |
| 9        | Wed  | 9/18 | Intro to classification,<br>Bayes classifier, KNN<br>classifier                      | 2.2.3                |                       |
| 10       | Fri  | 9/20 | Logistic Regression                                                                  | 4.1, 4.2,<br>4.3.1-3 | Hw #3 Due<br>Sun 9/22 |
| 11       | Mon  | 9/23 | Multiple Logistic<br>Regression / Multinomial<br>Logistic Regression<br>/Project day | 4.3.4-5              |                       |
|          | Wed  | 9/25 | Review                                                                               |                      |                       |
|          | Fri  | 9/27 | Midterm #1                                                                           |                      |                       |