Ch 3.1: More Linear Regression Lecture 5 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Mon, Sep 9, 2024

1/22

Last time:

• Started 3.1 - Single linear regression

Announcements:

- Office Hours
- Homework #1 Grading TBD
- Homework #2 Due Sun, Sep 15

- Confidence interval, hypothesis test, and p-value for coefficient estimates
- Residual standard error (RSE)
- R squared

Section 1

Last time

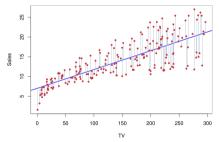
Setup

• Predict Y on a single predictor variable X

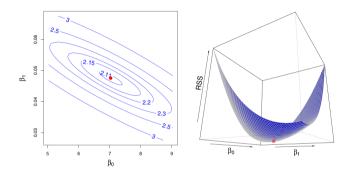
$$Y \approx \beta_0 + \beta_1 X$$

 "≈" …. "is approximately modeled as"

- Given $(x_1, y_1), \dots, (x_n, y_n)$
- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be prediction for Y on *i*th value of X.
- $e_i = y_i \hat{y}_i$ is the *i*th residual



Least squares criterion: RSS



Residual sum of squares RSS is

$$RSS = e_1^2 + \dots + e_n^2$$

 $= \sum_i (y_i - \hat{eta}_0 - \hat{eta}_1 x_i)^2$

Least squares criterion

Find β_0 and β_1 that minimize the RSS.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Section 2

Assessing Coefficient Estimate Accuracy

7/22

Bias in estimation

Analogy with mean

• Sample mean is unbiased for population mean:

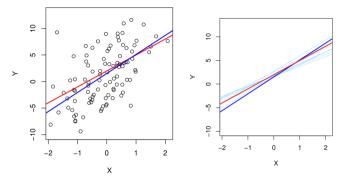
$$E(\hat{\mu}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \mu$$

• Standard variance estimate is biased

$$E(\hat{\sigma}^2) = E\left[\frac{1}{n}\sum_i (X_i - \overline{X})^2\right] \neq \sigma^2$$

- Assume a true value μ^*
- An estimate from training data $\hat{\mu}$
- The estimate is unbiased if $E(\hat{\mu}=\mu^*)$

Linear regression is unbiased



Variance in estimation

Continuing analogy with mean

- True value μ^{*}
- Estimate from training data $\hat{\mu}$
- Variance of sample mean $Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$

Variance of linear regression estimates

• Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where $\sigma^2 = \operatorname{Var}(\varepsilon)$

 $\bullet\,$ Residual standard error is an estimate of $\sigma\,$

$$RSE = \sqrt{RSS/(n-2)}$$

Coding group work

Run the section titled "Simulating data"

The 95% confidence interval for β_1 approximately takes the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

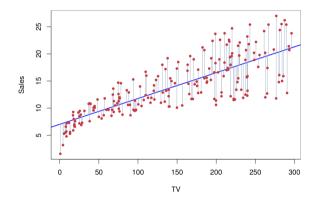
Interpretation:

There is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain β_1 where we repeatedly approximate $\hat{\beta}_1$ using repeated samples.

CI in Advertising data



For the advertising data set, the 95% CIs are:

- β₁ :: [0.042, 0.053]
- β₀ :: [6.130, 7.935]

14 / 22

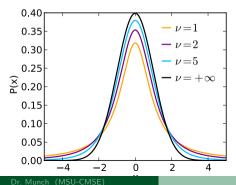
 H_0 : There is no relationship between X and Y H_1 : There is some relationship between X and Y

Test statistic and p-value

Test statistic:

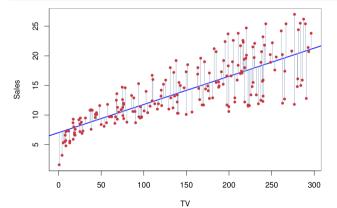
$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$$

t-distribution with n-2 degrees of freedom



Advertising example

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001



Residual standard error (RSE):

$$egin{aligned} RSE &= \sqrt{rac{1}{n-2}RSS} \ &= \sqrt{rac{1}{n-2}\sum_i(y_i-\hat{y}_i)^2} \end{aligned}$$

Assessing the accuracy of the module: R^2

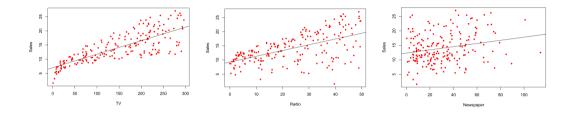
R squared:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where total sum of squares is

$$TSS = \sum_{i} (y_i - \overline{y})^2$$

Advertising example



$$R^2 = 0.61$$
 $R^2 = 0.33$ $R^2 = 0.05$

20 / 22

Coding group work

Run the section titled "Assessing Coefficient Estimate Accuracy"

Next time

Lec #	Date			Reading	нพ
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1	
2	Wed	8/28	What is statistical learning?	2.1	
	Fri	8/30	Class Cancelled (Dr Munch out of town)		
	Mon	9/2	No class - Labor day		
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2	
4	Fri	9/6	Linear Regression	3.1	HW #1 Due
5	Mon	9/9	More Linear Regression	3.1/3.2	Sun 9/8
6	Wed	9/11	Even more linear regression	3.2.2	
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Due

Announcements

- Homework 2
 - ► Due Sun, Sep 15