Ch 5.1.5: *k*-fold Cross-Validation for Classification Lecture 15 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Oct 7, 2024

Announcements

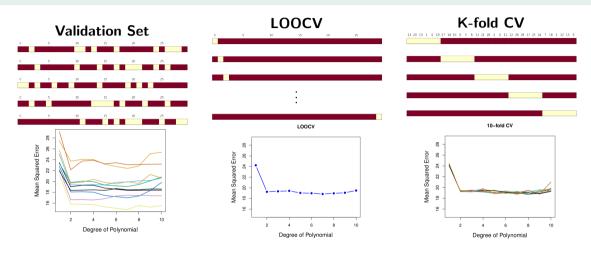
Last time:

k-fold CV

This lecture:

CV for classification

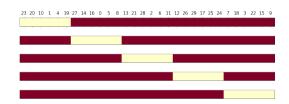
Announcements:


- Homework #4 is posted, Due Wednesday
- Grades

Percent	Convert	
≥ 90%	4.0	
≥ 85%	3.5	
≥ 80%	3	
≥ 75%	2.5	
≥ 70%	2	
≥ 65%	1.5	
≥ 60%	1	
< 60%	0	

Section 1

Last time


Approximations of Test Error

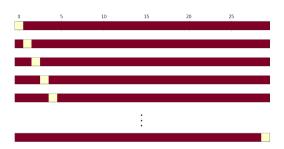
r. Munch (MSU-CMSE) Mon, Oct 7, 2024

Definition of k-fold CV

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\mathrm{MSE}_i = \frac{1}{\ell} \sum_{(\mathsf{x}_i, y_i) \in U_i} (y_j \hat{y}_j)^2$
- Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \mathrm{MSE}_{i}$$


Dr. Munch (MSU-CMSE)

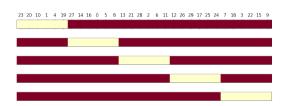
Section 2

CV for Classification

Setup: LOOCV

- Remove *i*th point (x_i, y_i) and reserve for testing.
- Train the model on remaining points
- Calculate $\operatorname{Err}_i = \operatorname{I}(y_j \neq \hat{y}_j)$
- Rinse and repeat

Return

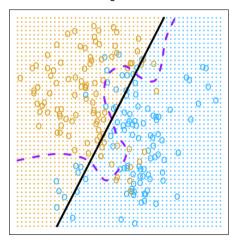

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE)

Mon, Oct

Setup: *k*-fold

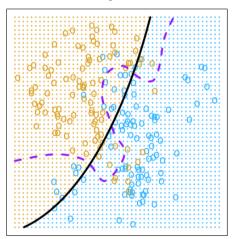
- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\operatorname{Err}_i = \frac{1}{\ell} \sum_{(x_i, y_i) \in U_i} \operatorname{I}(y_i \neq \hat{y}_i)$
- Rinse and repeat


Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE

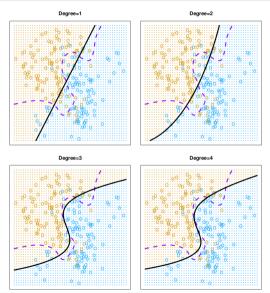
Example on simulated data: Linear


Degree=1

- Purple: Bayes decision boundary.
 - ► Error rate: 0.133
- Black: Logistic regression
 - $\log(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$
 - ► Error rate: 0.201

Example on simulated data: Quadratic logistic regression

• Purple: Bayes decision boundary.


► Error rate: 0.133

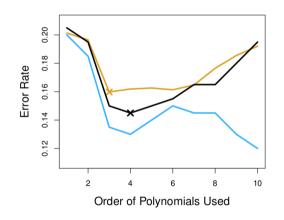
• Black: Logistic regression

▶
$$\log(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2$$

► Error rate: 0.197

Example on simulated data: all the polynomials!

 Purple: Bayes decision boundary.

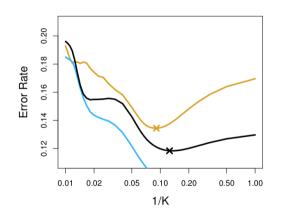

► Error rate: 0.133

• Black: Logistic regression

Deg 1 Error rate: 0.201
 Deg 2 Error rate: 0.197
 Deg 3 Error rate: 0.160

▶ Deg 4 Error rate: 0.162

Decide degree based on CV



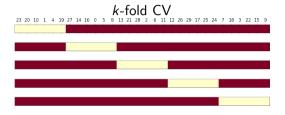
- Test error (brown)
- Training error (blue)
- 10-fold CV error (black)

12 / 16

r. Munch (MSU-CMSE) Mon, Oct 7, 2024

Similar game for KNN

- Test error (brown)
- Training error (blue)
- 10-fold CV error (black)


13 / 16

. Munch (MSU-CMSE) Mon, Oct 7, 2024

Coding - k-fold for penguin classification section

r. Munch (MSU-CMSE) Mon, Oct 7, 2024

TL;DR

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{MSE}_i$$

Use k = 5 or 10 usually

k-fold CV for classification

$$\mathrm{Err}_i = \mathrm{I}(y_j \neq \hat{y}_j)$$

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE)

Next time

Lec #	Date			Reading	HW
12	Mon	9/30	Leave one out CV	5.1.1, 5.1.2	
13	Wed	10/2	k-fold CV	5.1.3	
14	Fri	10/4	More k-fold CV,	5.1.4-5	
15	Mon	10/7	k-fold CV for classification	5.1.5	
16	Wed	10/9	Resampling methods: Bootstrap	5.2	HW #4 Due Weds 10/9
17	Fri	10/11	Subset selection	6.1	
18	Mon	10/14	Shrinkage: Ridge	6.2.1	
19	Wed	10/16	Shrinkage: Lasso	6.2.2	
20	Fri	10/18	Dimension Reduction	6.3	HW #5 Due
	Mon	10/21	No class - Fall break		Fri 10/18
	Wed	10/23	Review		
	Fri	10/25	Midterm #2		

Dr. Munch (MSU-CMSE) Mon, Oct 7, 2024