Ch 8.2.1, 8.2.2: Bagging and Random Forests

Lecture 25 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Nov 8, 2024

Announcements

Last time:

• 8.1 Decision Trees

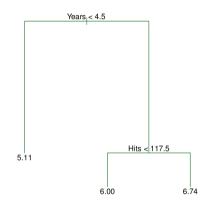
This lecture:

- 8.2.1 Bagging
- 8.2.2 Random forest

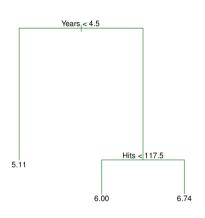
Announcements:

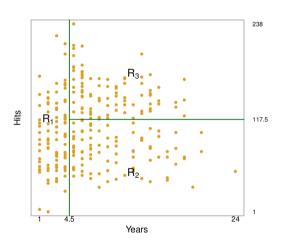
Homework 7 Due Sunday

Lec #	Date			Reading	HW		
21	Mon 10/28		Polynomial & Step Functions	7.1,7.2			
22	Wed	10/30	Step Functions; Basis functions; Start Splines	7.2 - 7.4			
23	Fri	11/1	Regression Splines	7.4	HW #6 Due Sun 11/3		
24	Mon	11/4	Decision Trees	8.1			
25	Wed	11/6	Class Cancelled (Dr Munch out of town)				
26	Fri	11/8	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 11/10		
27	Mon	11/11	Maximal Margin Classifier	9.1			
28	Wed	11/13	SVC	9.2			
29	Fri	11/15	SVM	9.3, 9.4	HW #8 Due		
30	Mon	11/18	Single layer NN	10.1	Sun 11/17		
31	Wed	11/20	Multi Layer NN	10.2			
32	Fri	11/22	CNN	10.3	HW #11		
33	Mon	11/25	TBD: Unsupervised learning/clustering	12.1, 12.4?	Due Sun 11/24		
	Wed	11/27	Virtual: Project office hours				
	Fri	11/29	No class - Thanksgiving				
	Mon	12/2	Review				
	Wed	12/4	Midterm #3				
	Fri	12/6	No class - EGR Design		Project due		


Dr. Munch (MSU-CMSE) Fri, Nov 8, 2024 2 / 24

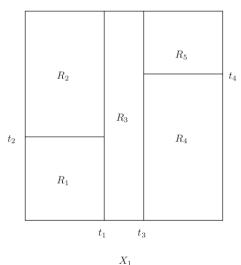
Section 1


Last time


First decision tree example

	Hits	Years	LogSalary	
1	81	14	6.163315	
2	130	3	6.173786	
3	141	11	6.214608	
4	87	2	4.516339	
5	169	11	6.620073	
317	127	5	6.551080	
318	136	12	6.774224	
319	126	6	5.953243	
320	144	8	6.866933	
321	170	11	6.907755	

Viewing Regions Defined by Tree



5 / 24

. Munch (MSU-CMSE) Fri, Nov 8, 2024

How do we actually get the tree? Two steps

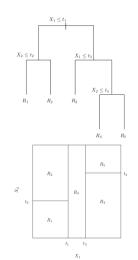
- We divide the predictor space that is, the set of possible values for X₁, X₂, · · · , X_p — into J distinct and non-overlapping regions, R₁, R₂, · · · , R_J.
- ② For every observation that falls into the region R_j , we make the same prediction = the mean of the response values for the training observations in R_j .

21.

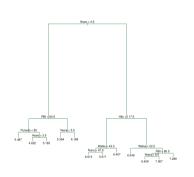
Recursive binary splitting

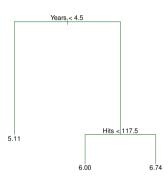
Goal:

Find boxes R_1, \dots, R_J that minimize


$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

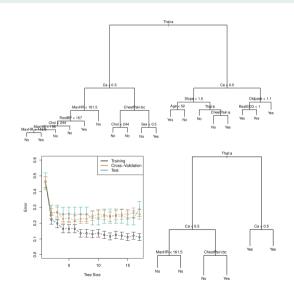
 \hat{y}_{R_j} = mean response for training observations in jth box


Pick s so that splitting into $\{X \mid X_j < s\}$ and $\{X \mid X_j \geq s\}$ results in largest possible reduction in RSS:


$$R_1(j,s) = \{X \mid X_j < s\}$$

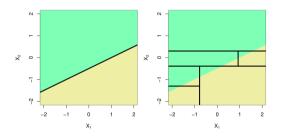
 $R_2(j,s) = \{X \mid X_j \ge s\}$

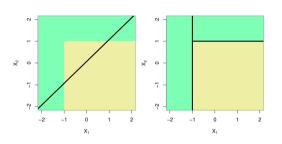
$$\sum_{i|x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i|x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$



Pruning

Classification version




Evaluating the splits:

- \hat{p}_{mk} = proportion of training observations in R_m from the kth class
- Error: $E = 1 \max_k(\hat{p}_{mk})$
- Gini index:

$$G = \sum_{k=1}^K \hat{
ho}_{mk} (1-\hat{
ho}_{mk})$$

Linear models vs trees

10 / 24

r. Munch (MSU-CMSE) Fri, Nov 8, 2024

Section 2

8.2.1 Bagging

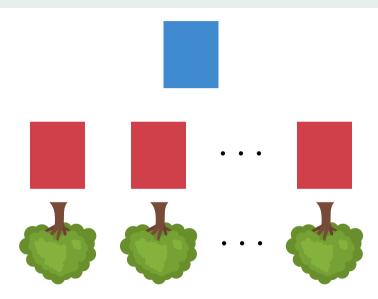
The bootstrap

Want to do (but can't):

Build separate models from independent training sets, and average resulting predictions:

- $\hat{f}^1(x), \dots, \hat{f}^B(x)$ for B separate training sets
- Return the average

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$

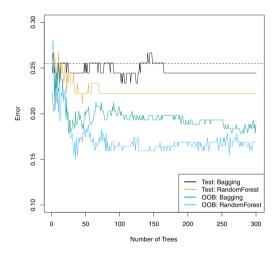

Boostrap modification:

- Work with fixed data set
- Take B samples from this data set (with replacement)
- Train method on *b*th sample to get $\hat{f}^{*b}(x)$
- Return average of predictions (regression)

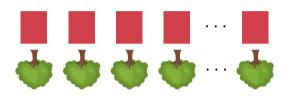
$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

or majority vote (classification)

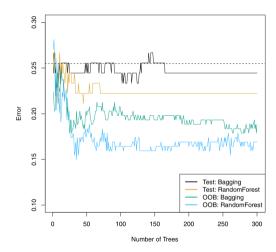
Tree version



Prediction on new data point


Dr. Munch (MSU-CMSE) Fri, Nov 8, 2024

Example: Heart classification data



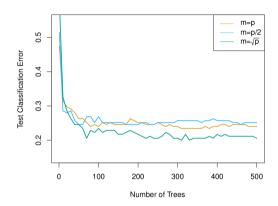
Out of Bag Error Estimation

- On average, bootstrap sample uses about 2/3 of the data
- Remaining observations not used are called out-of-bag (OOB) observations
- For each observation, run through all the trees where it wasn't used for building
- Return the average (or majority vote) of those as test prediction

Error using OOB

Bagging code example

Section 3


Random Forests

The idea

- Goal is to decorrelate the bagged trees:
 - If there is a strong predictor, the first split of most trees will be the same
 - Most or all trees will be highly correlated
 - Averaging highly correlated quantities doesn't decrease variance as much as uncorrelated

- The random forrest fix:
 - ► Each time a split is considered, only use a random subset of *m* the predictors
 - Fresh sample taken every time
 - ▶ Typically $m \approx \sqrt{p}$
 - ▶ On average, (p m)/p of splits won't consider strong predictor
 - ightharpoonup m = p gives back bagging

Example on gene expression

Coding example for random forests

Dr. Munch (MSU-CMSE) Fri, Nov 8, 2024

TL:DR

- Bagging: trees grown independently on random samples. Trees tend to be similar to each other, can result in getting caught in local optima
- Random forest: trees independently on samples, but split is done using random subset of features

r. Munch (MSU-CMSE) Fri, Nov 8, 2024

Next time

Lec #	Date			Reading	HW				
21	Mon	10/28	Polynomial & Step Functions	7.1,7.2					
22	Wed	10/30	Step Functions; Basis functions; Start Splines	7.2 - 7.4					
23	Fri	11/1	Regression Splines	7.4	HW #6 Due				
24	Mon	11/4	Decision Trees	8.1	Sun 11/3				
25	Wed	11/6	Class Cancelled (Dr Munch	nch out of town)					
26	Fri	11/8	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 11/10				
27	Mon	11/11	Maximal Margin Classifier	9.1					
28	Wed	11/13	SVC	9.2					
29	Fri	11/15	SVM	9.3, 9.4	HW #8 Due				
30	Mon	11/18	Single layer NN	10.1	Sun 11/17				
31	Wed	11/20	Multi Layer NN	10.2					
32	Fri	11/22	CNN	10.3	HW #11				
33	Mon	11/25	TBD: Unsupervised learning/clustering	12.1, 12.4?	Due Sun 11/24				
	Wed	11/27	Virtual: Project office hours						
	Fri	11/29	No class - Thanksgiving						
	Mon	12/2	Review						
	Wed	12/4	Midterm #3						
	Fri	12/6	No class - EGR Design Day		Project due				