Ch 4.3 - Logistic Regression Lecture 10 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 20, 2024

Announcements

Lec #	Date			Reading	нพ	
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1		
2	Wed	8/28	What is statistical learning?	2.1		
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2		
4	4 Fri 9/6		Linear Regression	3.1	HW #1 Due Sun 9/8	
5 Mon 9/9		9/9	More Linear Regression	3.1		
6	Wed	9/11	Multi-linear regression	3.2		
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Due	
8 Mon 9/16		9/16	Last of the linear regression		Dun 9/15	
9	Wed	9/18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	0 Fri 9/20		Logistic Regression	4.1, 4.2, 4.3.1-3	Hw #3 Due	
11	Mon	9/23	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	Sun 9/22	
	Wed	9/25	Project Day & Review			
	Fri	9/27	Midterm #1			

Announcements:

- Homework #3 Due Sunday on Crowdmark
- Wednesday Review day
 - Nothing prepped
 - Bring your questions
- Friday Exam #1
 - Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in

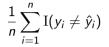
Last Time:

- Classification basics
- Bayes classifier
- KNN classifier

This time:

• Logistic Regression

3/25


Section 1

Review from last time

Error rate

Training error rate:

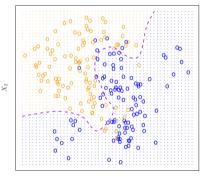
- Training data:
 - $\{(x_1, y_1), \cdots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

Test error rate:

 $\operatorname{Ave}(\operatorname{I}(y_0\neq \hat{y}_0))$

5/25

Best ever classifier

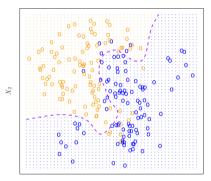

We can't have nice things

Bayes Classifier:

Give every observation the highest probability class given its predictor variables

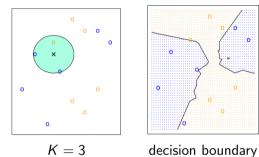
$$\Pr(Y=j\mid X=x_0)$$

Bayes Decision Boundary

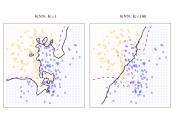

 X_1

• Error at
$$X = x_0$$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

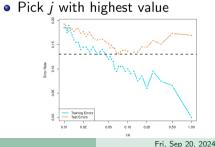

• Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$



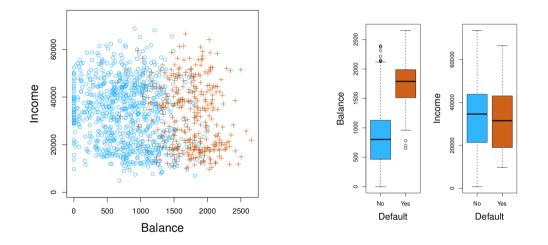
 X_1

K-Nearest Neighbors

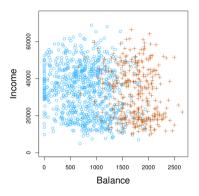

K = 3

0

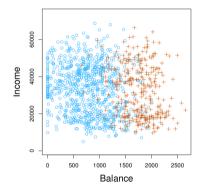
- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability


$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$

Section 2


Logistic Regression

Simulated Default data set



- Classification: When the response variable is qualitative
- Goal: Model the probability that Y belongs to a particular category

 $p(\texttt{balance}) = \mathsf{Pr}(\texttt{default} = \texttt{yes} \mid \texttt{balance})$

Goal for Balance data set

Goal: Model the probability that Y belongs to a particular category Ex. Pr(default = yes | balance)

Let's just use regression! JK that's a bad idea

Bad idea:

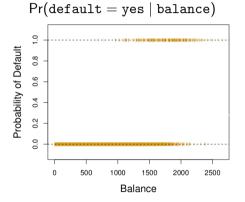
- Set Y to be a dummy variable taking values in $\{0, 1, 2, \cdots\}$
- Run regression, and choose k based on what integer value ŷ is closest to

Ex.

 $Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$

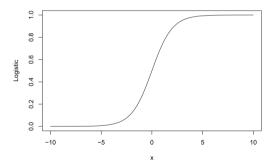
VS.

 $Y = \begin{cases} 1 & \text{if mild} \\ 2 & \text{if moderate} \\ 3 & \text{if severe} \end{cases}$


Bad idea is still not a great idea for two levels

$$p(\text{balance}) = \Pr(\text{default} = \text{yes} \mid \text{balance})$$

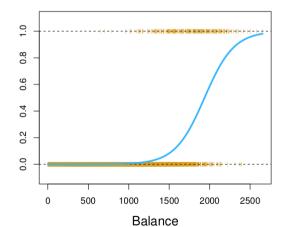
$$Y = \begin{cases} 0 & \text{if not default} \\ 1 & \text{if default} \end{cases}$$
• Fit linear regression
• Predict default if $\hat{y} > 0.5$; not default otherwise


 $p(\texttt{balance}) = \beta_0 + \beta_1 \texttt{balance}$

Approximating the probability

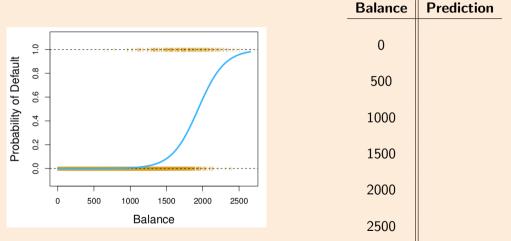
Logistic function

$$y = \frac{e^x}{1 + e^x}$$



$$p(X)=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}$$

Try it out: desmos.com/calculator/cw1pyzzqci


Logistic Regression

$$\mathsf{Pr}(\texttt{default} = \texttt{yes} \mid \texttt{balance}) = rac{e^{eta_0 + eta_1 \texttt{balance}}}{1 + e^{eta_0 + eta_1 \texttt{balance}}}$$

Dr. Munch (MSU-CMSE)

What will the drawn logistic regression classifer predict for each of the following values of Balance

 Odds

$$\frac{p(x)}{1-p(x)} = \frac{\Pr(Y=1 \mid X=x)}{1-\Pr(Y=1 \mid X=x)} = \frac{\Pr(Y=1 \mid X=x)}{\Pr(Y=0 \mid X=x)}$$

Examples:

• If the probability of default is 90% what are the odds?

•
$$p(x) = 0.9$$

• $\frac{0.9}{1-0.9} = 9$

• If the odds are 1/3, what is the probability of default?

•
$$\frac{p}{1-p} = 1/3$$

• $3p = 1 - p$

•
$$4p = 1$$

Probability
or risk
$$= \frac{p}{p+q} \mathbf{p} / \mathbf{p} q$$

Odds $= p:q \mathbf{p} : q$

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x): $p(x) = rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}}$

Playing with the logistic function: desmos.com/calculator/cw1pyzzqci

Dr. Munch (MSU-CMSE)

Using coefficients to make predictions

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is the estimated probability of default for someone with a balance of \$1,000?

What is the estimated probability of default for someone with a balance of \$2,000:

Interpreting the coefficients

$$p(x)=rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}}$$

		Coefficient	Std. error	z-statistic	p-value
Interd	cept	-10.6513	0.3612	-29.5	< 0.0001
balanc	ce	0.0055	0.0002	24.9	$<\!0.0001$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Confusion Matrix: Predicting default from balance

		True default status					True		
		No	Yes	Total			Yes	No	Total
Predicted	No	9644	252	9896	Predicted Yes		a	b	a + b
$default\ status$	Yes	23	81	104	No		c	d	c+d
	Total	9667	333	10000	Tot	al	a+c	b+d	N

Do coding in jupyter notebook

Next time

Lec #	Date			Reading	нพ	
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1		
2	Wed	8/28	What is statistical learning?	2.1		
3	Wed	9/4	Assessing Model Accuracy 2.2.1, 2.2.2			
4	Fri	9/6	Linear Regression	3.1	HW #1 Due	
5	Mon	9/9	More Linear Regression	3.1	Sun 9/8	
6	Wed	9/11	Multi-linear regression	Multi-linear regression 3.2		
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Due	
8	8 Mon 9/16		Last of the linear regression		Dun 9/15	
9	Wed	9/18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Fri 9/20		Logistic Regression	4.1, 4.2, 4.3.1-3	Hw #3 Due	
11	Mon	9/23	Multiple Logistic Regression / Multinomial Logistic Regression	4.3.4-5	Hw #3 Due Sun 9/22	
	Wed	9/25	Project Day & Review			
	Fri	9/27	Midterm #1			