Ch 3.3: The Last of the Linear Regression

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Mon, Sep 16, 2024

Announcements

Last time:

Started 3.3 Questions of linear regression

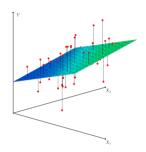
Announcements:

2/21

• HW #3 Due Sunday 9/22

r. Munch (MSU-CMSE) Mon, Sep 16, 2024

Covered in this lecture


- Extending the linear model with interaction terms
- Hierarchy principle
- Polynomial regression

Or. Munch (MSU-CMSE) Mon, Sep 16, 2024

Section 1

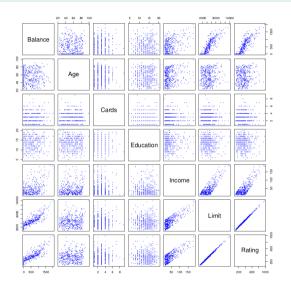
Review from last time

Linear Regression with Multiple Variables

 \bullet Predict Y on a multiple variables X

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p x_p + \varepsilon$$

- Find good guesses for $\hat{\beta}_0$, $\hat{\beta}_1$, \cdots .
- $\bullet \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \dots + \hat{\beta}_p x_p$


- $e_i = y_i \hat{y}_i$ is the *i*th residual
- RSS = $\sum_i e_i^2$
- RSS is minimized at least squares coefficient estimates

Dr. Munch (MSU-CMSE)

Section 2

Categorical Input Variables

Credit card balance

own: house ownership

student: student status

• status: marital status

• region: East, West, or South

7 / 21

r. Munch (MSU-CMSE) Mon, Sep 16, 2024

One-hot encoding of categorical input variable

Create a new variable

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if ith person is student} \\ \beta_0 + \varepsilon_i & \text{if ith person isn't} \end{cases} \end{aligned}$$

Dr. Munch (MSU-CMSE)

Who cares about 0/1?

Old version: 0/1

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i \text{th person is student} \\ \beta_0 + \varepsilon_i & \text{if } i \text{th person isn't} \end{cases}$$

Alternative version: ± 1

$$x_i = egin{cases} 1 & ext{if } i ext{th person is a student} \ -1 & ext{if } i ext{th person is not a student} \end{cases}$$

Model:

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if ith person is student} \\ \beta_0 - \beta_1 + \varepsilon_i & \text{if ith person isn't} \end{cases} \end{aligned}$$

Qualitiative Predictor with More than Two Levels

Region:

South West East

Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from South} \\ 0 & \text{if } i \text{th person not from South} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person from West} \\ 0 & \text{if } i \text{th person not from West} \end{cases}$$

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i \text{th person from South} \\ \beta_0 + \beta_2 + \varepsilon_i & \text{if } i \text{th person from West} \\ \beta_0 + \varepsilon_i & \text{if } i \text{th person from East} \end{cases} \end{aligned}$$

More on multiple levels

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	< 0.0001
region[South]	-18.69	65.02	-0.287	0.7740
region[West]	-12.50	56.68	-0.221	0.8260

Do code section on "Dummy Variables for Multi-level Categorical Inputs"

Dr. Munch (MSU-CMSE)

Section 3

Extending the linear model

Assumptions so far

Back to our Advertising data set

$$\hat{Y}_{sales} = eta_0 + eta_1 \cdot X_{TV} + eta_2 \cdot X_{radio} + eta_3 \cdot X_{newspaper}$$

Assumed (implicitly) that the effect on sales by increasing one medium is independent of the others.

What if spending money on radio advertising increases the effectiveness of TV advertising? How do we model it?

Interaction Term

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

$$Y_{sales} = \beta_0 + \beta_1 X_{TV} + \beta_2 X_{radio} + \beta_3 X_{radio} X_{TV} + \varepsilon$$
$$= \beta_0 + (\beta_1 + \beta_3 X_{radio}) X_{TV} + \beta_2 X_{radio} + \varepsilon$$
$$= \beta_0 + \tilde{\beta}_1 X_{TV} + \beta_2 X_{radio} + \varepsilon$$

r. Munch (MSU-CMSE) Mon, Sep 16, 2024

Interaction term

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
$TV \times radio$	0.0011	0.000	20.73	< 0.0001

$Y_{sales} = \beta_0$	$+ \beta_1 X_{TV} + \beta_2 X_{radio} + \beta_3 X_{radio} X_{TV} + \epsilon_3 X_{TV} $
$=\beta_0$	$+\left(eta_1+eta_3 X_{radio} ight)\!X_{TV}+eta_2 X_{radio}+arepsilon$

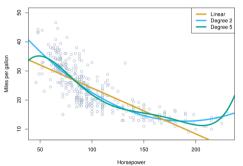
Mon, Sep 16, 2024

Interpretation

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes}{\tt radio}$	0.0011	0.000	20.73	< 0.0001

Hierarchy principle

Sometimes *p*-value for interaction term is very small, but associated main effects are not.


The hierarchy principle:

18 / 21

Or. Munch (MSU-CMSE) Mon, Sep 16, 2024

Nonlinear relationships

$$mpg = \beta_0 + \beta_1 \cdot horsepower + \beta_2 \cdot horsepower^2 + \varepsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Dr. Munch (MSU-CMSE) Mon, Sep 16, 2024

Do the section on "Interaction Terms"

Next time

Lec #	Date			Reading	HW	
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1		
2	Wed	8/28	What is statistical learning?	2.1		
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2		
4	Fri	9/6	Linear Regression	3.1	HW #1 Due Sun 9/8	
5	Mon	9/9	More Linear Regression	3.1		
6	Wed	9/11	Multi-linear regression	3.2		
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Due	
8	Mon	9/16	Last of the linear regression		Dun 9/15	
9	Wed	9/18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Fri	9/20	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	Mon	9/23	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due Sun 9/22	
	Wed	9/25	Review			
	Fri	9/27	Midterm #1			

Dr. Munch (MSU-CMSE) Mon, Sep 16, 2024