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Announcements

Last time:

9.2 Support Vector
Classifier

This lecture:

9.3 Support Vector Machine

Announcements:

HW #7 due Monday
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Section 1

Last Time
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Classification Setup

Data matrix:

X =


− xT1 −
− xT2 −

...
− xTn −


n×p

x1 =

x11
...

x1p

 , · · · , xn =

xn1
...

xnp



Observations in one of two classes,
yi ∈ {−1, 1}

Y =


y1
y2
...
yn



Separate out a test observation

x∗ = (x∗1 · · · x∗p )T
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Hyperplane becomes a classifier

If you have a separating hyperplane:

Check

f (x∗) = β0+β1x
∗
1 +β2x

∗
2 + · · ·+βpx

∗
p

If positive, assign ŷ = 1

If negative, assign ŷ = −1
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How do we pick? Old version
Maximal margin classifier

For a hyperplane, the margin is the
smallest distance from any data point
to the hyperplane.

Observations that are closest are
called support vectors.

The maximal margin hyperplane is
the hyperplane with the largest
margin

The classifier built from this
hyperplane is the maximal margin
classifier.
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Issues

No separating hyperplane
exists

Choice of hyperplane is sensitive to new points
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Support Vector Classifier
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Two formulations side by side

Maximal Margin Classifier

Support Vector Classifier
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So many variables

C is nonnegative tuning parameter

M is the width of the margin

ε1, · · · , εn are slack variables allowing observations
to go to the other side
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Limiting factor of SVC
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Section 2

Support Vector Machine
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Example of using more features

Want 2p features:

X1,X
2
1 ,X2,X

2
2 , · · · ,Xp,X

2
p

Optimization becomes:
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Kernels
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Inner products

⟨a, b⟩ =
r∑

i=1

aibi
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Quick computations

What are the following?

⟨(1, 1), (0, 3)⟩
⟨(1, 1), (3, 2)⟩
⟨(2, 3), (0, 3)⟩
⟨(2, 3), (3, 2)⟩
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SVC via inner products

f (x) = β0 +
n∑

i=1

αi ⟨x , xi ⟩
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Example

−2
√
2 +

√
2

2
X1 +

√
2

2
X2 = 0

−2
√
2 +

√
2

18
⟨(X1,X2), (0, 3)⟩+

√
2

6
⟨(X1,X2), (3, 2)⟩ = 0
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What are the αis?

Data point αi

(3, 4)

(2.5, 3.5)

(3, 2)

(3, 0)

(0, 3)

(1, 1)

(0.5, 1.25)

What αi ’s are needed to write the hyperplane

−2
√
2 +

√
2

18
⟨(X1,X2), (0, 3)⟩+

√
2

6
⟨(X1,X2), (3, 2)⟩

of the previous page in the form

f (x) = β0 +
∑
i∈S

αi ⟨x , xi ⟩?
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SVC via inner products of support vectors

f (x) = β0 +
∑
i∈S

αi ⟨x , xi ⟩
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The kernel

K (xi , x
′
i )

f (x) = β0 +
∑
i∈S

αiK (x , xi )
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A polynomial kernel

K (xi , xi ′) =

1 +

p∑
j=1

xijxi ′j

d
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A radial kernel

K (xi , x
′
i ) = exp

−γ

p∑
j=1

(xij − xi ′j)
2



Dr. Munch (MSU-CMSE) Fri, Nov 15, 2024 23 / 30



Support Vector Machine

f (x) = β0 +
∑
i∈S

αiK (x , xi )
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Coding
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Section 3

SVM with more than two classes
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One-Vs-One Classification
Also called all-pairs
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One-Vs-All Classification
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TL;DR

f (x) = β0 +
∑
i∈S

αiK (x , xi )

Kernels

Linear

K(xi , xi′) =

p∑
j=1

xijxi′j

Polynomial

K(xi , xi′) =

(
1 +

p∑
j=1

xijxi′j

)d

Radial

K(xi , x
′
i ) = exp

(
−γ

p∑
j=1

(xij − xi′j)
2

)
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Next time
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