## Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression Lecture 11 - CMSE 381

#### Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Mon, Sep 23, 2024

1/21

#### Announcements

| Lec<br># | Date |      |                                                                      | Reading              | нพ        |
|----------|------|------|----------------------------------------------------------------------|----------------------|-----------|
| 1        | Mon  | 8/26 | Intro / First day stuff /<br>Python Review Pt 1                      | 1                    |           |
| 2        | Wed  | 8/28 | What is statistical learning?                                        | 2.1                  |           |
| 3        | Wed  | 9/4  | Assessing Model Accuracy                                             | 2.2.1,<br>2.2.2      |           |
| 4        | Fri  | 9/6  | Linear Regression                                                    | 3.1                  | HW #1 Due |
| 5        | Mon  | 9/9  | More Linear Regression                                               | 3.1                  | Sun 9/8   |
| 6        | Wed  | 9/11 | Multi-linear regression                                              | 3.2                  |           |
| 7        | Fri  | 9/13 | Probably more linear<br>regression                                   | 3.3                  | Hw #2 Due |
| 8        | Mon  | 9/16 | Last of the linear<br>regression                                     |                      | Dun 9/15  |
| 9        | Wed  | 9/18 | Intro to classification,<br>Bayes classifier, KNN<br>classifier      | 2.2.3                |           |
| 10       | Fri  | 9/20 | Logistic Regression                                                  | 4.1, 4.2,<br>4.3.1-3 | Hw #3 Due |
| 11       | Mon  | 9/23 | Multiple Logistic<br>Regression / Multinomial<br>Logistic Regression | 4.3.4-5              | Sun 9/22  |
|          | Wed  | 9/25 | Project Day & Review                                                 |                      |           |
|          | Fri  | 9/27 | Midterm #1                                                           |                      |           |
|          |      |      |                                                                      |                      |           |

#### **Announcements:**

- Wednesday Project day
  - Send me a message or email if you're planning on doing an honors version of the project.
- Wednesday Review day
  - Nothing prepped
  - Bring your questions
- Friday Exam #1
  - Bring 8.5×11 sheet of paper
  - Handwritten both sides
  - Anything you want on it, but must be your work
  - You will turn it in
  - Non-internet calculator if you want it

#### Last Time:

• Logistic Regression

#### This time:

- Multiple Logistic Regression
- Multinomial Logistic Regression

## Section 1

## Review of Logistic Regression from last time

#### Logistic regression

- Assume single input X
- Output takes values  $Y \in \{Yes, No\}$



$$p(X) = \mathsf{Pr}(Y = \mathtt{yes} \mid \mathtt{balance})$$

$$p(\mathtt{x}) = rac{e^{eta_0+eta_1\mathtt{x}}}{1+e^{eta_0+eta_1\mathtt{x}}}$$

#### How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):  $p(x) = rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}}$ 

Playing with the logistic function: desmos.com/calculator/cw1pyzzqci

Dr. Munch (MSU-CMSE)

## Section 2

## Multiple Logistic Regression

 $p \geq 1$  input variables

#### Y output variable has only two levels

$$X_1, X_2, \cdots, X_p$$

#### Multiple features:

$$p(X) = rac{e^{eta_0+eta_1X_1+\dots+eta_
ho X_
ho}}{1+e^{eta_0+eta_1X_1+\dots+eta_
ho X_
ho}}$$

#### Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

## Example

|   | default | student | balance     | income       |
|---|---------|---------|-------------|--------------|
| 0 | No      | No      | 729.526495  | 44361.625070 |
| 1 | No      | Yes     | 817.180407  | 12106.134700 |
| 2 | No      | No      | 1073.549164 | 31767.138950 |
| 3 | No      | No      | 529.250605  | 35704.493940 |
| 4 | No      | No      | 785.655883  | 38463.495880 |
| 5 | No      | Yes     | 919.588531  | 7491.558572  |
| 6 | No      | No      | 825.513331  | 24905.226580 |
| 7 | No      | Yes     | 808.667504  | 17600.451340 |
| 8 | No      | No      | 1161.057854 | 37468.529290 |
| 9 | No      | No      | 0.000000    | 29275.268290 |

## Predict default from balance, student, and income

#### Default data set

## Section 3

## Multinomial Logistic Regression

 $p \geq 1$  input variables

#### Y output variable has K levels

$$X_1, X_2, \cdots, X_p$$

## Remember dummy variables?

Slide from linear regression days

| negron. |                 |                 | Create spare dummy variables:               |                                                                         |  |
|---------|-----------------|-----------------|---------------------------------------------|-------------------------------------------------------------------------|--|
|         | x <sub>i1</sub> | x <sub>i2</sub> | Clear                                       | e spare dunning variables.                                              |  |
| South   | 1               | 0               | $x_{i1} = \begin{cases} 1 \\ 1 \end{cases}$ | if <i>i</i> th person from South                                        |  |
| West    | 0               | 1               |                                             | if <i>i</i> th person not from South<br>if <i>i</i> th person from West |  |
| East    | 0               | 0               | $x_{i2} = \begin{cases} 0 \end{cases}$      | if <i>i</i> th person not from West                                     |  |
|         |                 |                 |                                             |                                                                         |  |

Region:

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ 

#### Example

Predict  $Y \in \{\texttt{stroke}, \texttt{overdose}, \texttt{seizure}\}$  for hospital visits based on some input(s) X

$$\Pr(Y = \texttt{stroke} \mid X = x) =$$

$$\Pr(Y = \texttt{overdose} \mid X = x) =$$

$$\Pr(Y = \texttt{seizure} \mid X = x) =$$

# Multinomial Logistic Regression Plan A

- Assume Y has K levels
- Make *K* (the last one) the baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Predict  $Y \in \{\texttt{stroke, overdose, seizure}\}$  for hospital visits based on Xp

$$\begin{aligned} & \Pr(Y = \texttt{stroke} \mid X = x) = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)} \\ & \Pr(Y = \texttt{overdose} \mid X = x) = \frac{\exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)} \\ & \Pr(Y = \texttt{seizure} \mid X = x) = \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)} \end{aligned}$$

#### Log odds

Calculated so that log odds between *any pair of* classes is linear. Specifically, for Y = k vs Y = K, we have

$$\log\left(\frac{\Pr(Y=k\mid X=x)}{\Pr(Y=K\mid X=x)}\right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{k_p}x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{l_p}x_p}}$$
$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1}x_1 + \dots + \beta_{l_p}x_p}}.$$

Dr. Munch (MSU-CMSE)

17 / 21

#### Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{k_p} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{l_p} x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

## Softmax example

$$\Pr(Y = \texttt{stroke} \mid X = x) = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}$$

$$\begin{aligned} \Pr(Y = \texttt{overdose} \mid X = x) \\ = \frac{\exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{aligned}$$

$$\Pr(Y = \texttt{seizure} \mid X = x) \\ = \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{OD},0} + \beta_{\texttt{OD},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}$$

## Jupyter Notebook

## Next time

| Lec<br># | Date |      | Date                                                                 |                      | нพ                    |
|----------|------|------|----------------------------------------------------------------------|----------------------|-----------------------|
| 1        | Mon  | 8/26 | Intro / First day stuff /<br>Python Review Pt 1                      | 1                    |                       |
| 2        | Wed  | 8/28 | What is statistical learning?                                        | 2.1                  |                       |
| 3        | Wed  | 9/4  | Assessing Model Accuracy                                             | 2.2.1,<br>2.2.2      |                       |
| 4        | Fri  | 9/6  | Linear Regression                                                    | 3.1                  | HW #1 Due             |
| 5        | Mon  | 9/9  | More Linear Regression                                               | 3.1                  | Sun 9/8               |
| 6        | Wed  | 9/11 | Multi-linear regression                                              | 3.2                  |                       |
| 7        | Fri  | 9/13 | Probably more linear<br>regression                                   | 3.3                  | Hw #2 Due<br>Dun 9/15 |
| 8        | Mon  | 9/16 | Last of the linear<br>regression                                     |                      |                       |
| 9        | Wed  | 9/18 | Intro to classification,<br>Bayes classifier, KNN<br>classifier      | 2.2.3                |                       |
| 10       | Fri  | 9/20 | Logistic Regression                                                  | 4.1, 4.2,<br>4.3.1-3 | Hw #3 Due<br>Sun 9/22 |
| 11       | Mon  | 9/23 | Multiple Logistic<br>Regression / Multinomial<br>Logistic Regression | 4.3.4-5              |                       |
|          | Wed  | 9/25 | Project Day & Review                                                 |                      |                       |
|          | Fri  | 9/27 | Midterm #1                                                           |                      |                       |
|          |      |      |                                                                      |                      |                       |