Intro and First Day Stuff Lecture 1 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Mon, Aug 26, 2024

Dr. Munch (she/her) Depts of CMSE and Math

Christy Lu (she/her) Graduate Student, CMSE, MSU

What is this course about?

Topics:

- Fundamental concepts of data science
- Regression
- Classification
- Dimension reduction
- Resampling methods
- Tree-based methods, etc.

D2L and where to find grades

https://d2l.msu.edu/d2l/home/2066703

🕈 🕴 FS24-CMSE-381-001 - Fundamentals of Data Science ... 💠 🔛 🗁 💭 🖞 🛛 💦 Elizabeth Munch

Course Home Content Course Tools ~ Assessments ~ Communication ~ Help

FS24-CMSE-381-001 - Fundamentals Methods	of Data Science
Announcements ~	Need Help? ~
There are no announcements to display.	MSU IT Service Desk: Local: (517) 432-6200 Toll Free: (844) 678-6200
Updates 🗸	(North America and Hawaii)
There are no current updates for FS24-CMSE-381-001 - Fundamentals of Data Science Methods	D2L Contact Form D2L Help Site MSU IT Service Status Subscribe
Content Browser 🗸	Training: Educational Technology Training
ISU-CMSE)	Mon. Aug 26, 2024

4 / 24

Slack and where to find announcements/ask questions

Join cmse-courses slack: https://tinyurl.com/cmse-courses-slack-invite

Course Website and where to find slides and jupyter notebooks

Crowdmark and where to submit homework

No URL: You will get an automated email from the system (I think?)

-×	My Courses > Math 103 > Assignment	Armeila Earhart 🔅 Sign out
15-	Accir	anment
My Courses	A331	griment
Math 103	Due: Tuesday January 26, 202	21 11:59 PM (Eastern Standard Time)
Math 102		
Math 101	Assignment description	
	This is your test on cellular composition and deve enough time to submit your answers.	lopment. Please write clearly and remember to leave
	Submit your assignment	0 Help
	Q1 (16 points)	
	Draw a diagram of an animal cell and label all the	parts of the cell.
	Drag and drop you	ur files or click to browse
	Q2 (5 points)	
	Describe how plant cells and animal cells differ an	nd why.
		Edit Preview
	Please enter your response to Q2	
	Attack See Econotics See 0	

Zoom link: https://bit.ly/3FTuRqG

Dr. Munch

Time TBD (Starting next week)

Zoom & EGR 1511

Christy Lu

Time TBD

Zoom & EGR (Room TBD)

Textbook

Free download

https://www.statlearning.com/

Springer Texts in Statistics

Gareth James - Daniela Witten - Trevor Hastie -Robert Tibshirani - Jonathan Taylor

An Introduction to Statistical Learning

with Applications in Python

🙆 Springer

- Class is a combination of lecture time, and group work/coding time.
 - Bring computer every day
 - Jupyter notebooks
 - Python
- Once a week, there will be a short check-in quiz. This will be basic content realted to lectures since the last class. Possible questions include checking on definitions, or basic understanding of major ideas.
 - 10 points per quiz
 - Drop two lowest grades

Class Structure Pt 2

- Homeworks due once a week, midnight of the day marked in the schedule (mostly Sundays).
 - 20 points per homework
 - Drop two lowest grades
 - Sliding scale:
 - ★ 24 hours late: 5% penalty.
 - ★ 48 hours late: 15% penalty.
 - \star >48 hours: No late work accepted.
- Three Midterms
 - See schedule for dates
 - 100 points each
 - Not cumulative
- One Project
 - Analyze dataset using tools in class, submit written report
 - ► 100 points
 - Due at the end of the semester

Approximate schedule

Up to date version: https://msu-cmse-courses.github.io/CMSE381-F24/Course_Info/Schedule.html

Lec #	Date			Reading	нพ
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1	
2	Wed	8/28	What is statistical learning?	2.1	
	Fri	8/30	Class Cancelled (Dr Munch out of town)		
	Mon	9/2	No class - Labor day		
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2	
4	Fri	9/6	Linear Regression	3.1	HW #1 Due
5	Mon	9/9	More Linear Regression	3.1/3.2	Sun 9/8
6	Wed	9/11	Even more linear regression	3.2.2	
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Due
8	Mon	9/16	Linear regression coding module		Dun 9/15
9	Wed	9/18	Intro to classification, Bayes classifier, KNN classifier	2.2.3	
10	Fri	9/20	Logistic Regression	4.1, 4.2, 4.3.1-3	
11	Mon	9/23	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due Sun 9/22
	Wed	9/25	Review		
	Fri	9/27	Midterm #1		

Lec #	ec Date			Reading	нพ	Pop Quizzes
12 Mon 9		9/30	Leave one out CV	5.1.1, 5.1.2		
13	Wed	10/2	k-fold CV	5.1.3		
14	Fri	10/4	More k-fold CV,	5.1.4-5	HW #4 Due	
15	Mon	10/7	k-fold CV for classification	5.1.5	Sun 10/6	
16	Wed	10/9	Resampling methods: Bootstrap	5.2		
17	Fri	10/11	Subset selection	6.1	HW #5 Due	
18	Mon	10/14	Shrinkage: Ridge	6.2.1	Sun 10/13	
19	Wed	10/16	Shrinkage: Lasso	6.2.2		
20	Fri	10/18	Dimension Reduction	6.3		
	Mon	10/21	No class - Fall break		HW #6 Due	
	Wed	10/23	Review (Virtual)		Tues 10/22	
	Fri	10/25	Midterm #2			
21	Mon	10/28	Polynomial & Step Functions	7.1,7.2		
22	Wed	10/30	Step Functions; Basis functions; Start Splines	7.2 - 7.4		
23	Fri	11/1	Regression Splines	7.4	LIM #7 Duo	
24	Mon	11/4	Decision Trees	8.1	Sun 11/3	
25	Wed	11/6	Random Forests	8.2.1, 8.2.2		
26	Fri	11/8	Maximal Margin Classifier	9.1	HW #8 Due	
27	Mon	11/11	SVC	9.2	oun 11/10	

Lec #	Date		Date			Reading	нพ	Pop Quizzes
27	Mon	11/11	SVC	9.2	Sun 11/10			
28	Wed	11/13	SVM	9.3, 9.4				
29	Fri	11/15	Single layer NN	10.1	HW #9 Due			
30	Mon	11/18	Multi Layer NN	10.2	Sun 11/17			
31	Wed	11/20	CNN	10.3				
32	Fri	11/22	TBD: Unsupervised learning/clustering	12.1, 12.4?	HW #10 Due Sun			
33	Mon	11/25	TBD		11/24			
	Wed	11/27	Virtual: Project office hours					
	Fri	11/29	No class - Thanksgiving					
	Mon	12/2	Review					
	Wed	12/4	Midterm #3					
	Fri	12/6	No class - EGR Design Day		Project due			
			No final exam					

Estimated PointsHomeworks $(10 \text{ homeworks - } 2 \text{ lowest grades}) \times 20 \text{ points = } 160$ Quizzes $(12 \text{ Quizzes - } 2 \text{ lowest grades}) \times 10 \text{ points = } 100$ Midterm $(3 \text{ Midterms}) \times 100 = 300$ Final Project100TOTAL:660 (Subject to change!)

Section 1

Intro to class

Statistical Learning

- Subfield of statistics
- Emphasizes models and their interpretability, precision, and uncertainty

Machine Learning

• Machine learning has a greater emphasis on large scale applications and prediction accuracy.

Very blurred distinction at this point

Data is cheap (or even free), learning how to analyze data is critical.

- Web data, e-commerce (Amazon, JD, Alibaba)
- Car sales (Tesla, Ford, and GM)
- Sports team (MSU, Lions, etc)
- Politics and government

Learning Tools as Black Boxes

- Need to know what tool to use
- Need to know how to interpret output of the tool
- Don't need to rebuild the entire box from scratch

	george	you	your	hp	free	hpl	!	our	re	edu	remove
spam	0.00	2.26	1.38	0.02	0.52	0.01	0.51	0.51	0.13	0.01	0.28
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

if (%george < 0.6) & (%you > 1.5) then spam else email.

 $\begin{array}{ll} \mbox{if } (0.2 \cdot \texttt{%you} \ - \ 0.3 \cdot \texttt{\%george}) > 0 & \mbox{then spam} \\ & \mbox{else email.} \end{array}$

- Outcome measurement Y (also called dependent variable, response, target, label).
- Vector of *p* predictor measurements *X* (also called inputs, regressors, covariates, features, independent variables).
- In the regression problem, Y is quantitative (e.g price, blood pressure).
- In the classification problem, Y takes values in a finite, unordered set (survived/died, digit 0-9, cancer class of tissue sample).

- No outcome variable, just a set of predictors (features) measured on a set of samples.
- Objective is fuzzier: find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation.
- Difficult to know how well you are are doing.
- Different from supervised learning but can be useful as a pre-processing step for supervised learning.

Generative AI discussion

Definition via Wikipedia:

Generative artificial intelligence (AI) is artificial intelligence capable of generating text, images, or other media, using generative models. Generative AI models learn the patterns and structure of their input training data and then generate new data that has similar characteristics.

Examples:

- ChatGPT
- Bard
- DALL-E

- Get in a group of about 4.
- Open this google doc (MSU Login required): tinyurl.com/CMSE381-genAl
- In your group, brainstorm cases where someone might use generative AI in the context of our class.
- Once you have added a few, start adding arguments for or against whether we should allow the use of that context in class.

Section 2

Python Review Lab: Pt 1

Plan for the lab

- Find a group of 4 or so.
- Find the class website (cmse.msu.edu/CMSE381) and download the jupyter notebook for the Python Review Lab.
- Get started!

- Weds: What is statistical learning?
- First HW Due Sunday, 9/8
- $\bullet~$ Quiz sometime \boldsymbol{this} week
- Office hours:
 - Maintained on the website
 - Dr. Munch: Monday and Friday 11-12 (Starting next week)
 - Christy Lu: Times TBD

Lec #	Date			Reading	нw
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1	
2	Wed	8/28	What is statistical learning?	2.1	
	Fri	8/30	Class Cancelled (Dr Munch out of town)		
	Mon	9/2	No class - Labor day		
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2	
4	Fri	9/6	Linear Regression	3.1	HW #1 Due
5	Mon	9/9	More Linear Regression	3.1/3.2	Sun 9/8
6	Wed	9/11	Even more linear regression	3.2.2	
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Due