Ch 6.3: Dimension Reduction - PCA Lecture 19 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Weds, Oct 16, 2024

Announcements

Last time:

• Shrinkage: Ridge and Lasso

This lecture:

PCA

Announcements:

- Exam #2 on Friday!
 - ▶ Bring 8.5×11 sheet of paper
 - Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in
 - ► Non-internet calculator if you want it

Lec #	Date			Reading	HW
12	Mon	9/30	Leave one out CV	5.1.1, 5.1.2	
13	Wed	10/2	k-fold CV	5.1.3	
14	Fri	10/4	More k-fold CV,	5.1.4-5	
15	Mon	10/7	k-fold CV for classification	5.1.5	
16	Wed	10/9	Subset selection	6.1	HW #4 Due Weds 10/9
17	Fri	10/11	Shrinkage: Ridge	6.2.1	
18	Mon	10/14	Shrinkage: Lasso	6.2.2	
19	Wed	10/16	Dimension Reduction	6.3	
20	Fri	10/18	Overflow, Possibly more dimension reduction?		HW #5 Due
	Mon	10/21	No class - Fall break		Fri 10/18
	Wed	10/23	Review		
	Fri	10/25	Midterm #2		

2 / 24

r. Munch (MSU-CMSE) Weds, Oct 16, 2024

Section 1

Last time

Goal

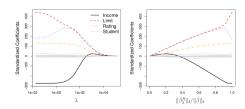
- Fit model using all p predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

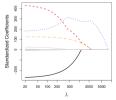
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

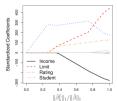
Shrinkage

Find β to minimize:

Least Squares:


$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$


Ridge:


$$RSS + \sum_{j=1}^{p} \beta_j^2$$

The Lasso:

$$RSS + \sum_{j=1}^p |\beta_j|$$

Section 2

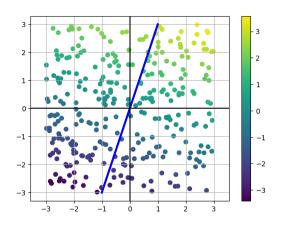
Dimension Reduction

Linear transformation of predictors

Original Predictors:

$$X_1, \cdots, X_p$$

New Predictors:


$$Z_1, \cdots, Z_M$$

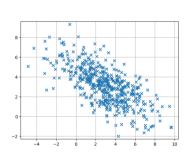
$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$

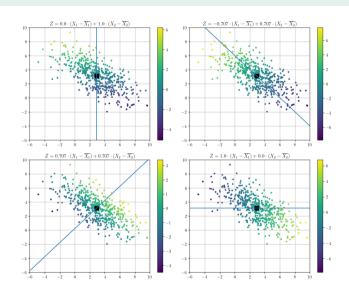
An example or two

Dr. Munch (MSU-CMSE)

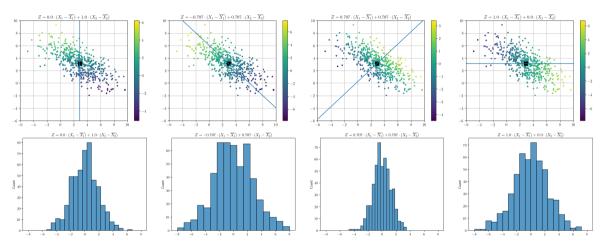
Geometric interpretation

9 / 24


Or. Munch (MSU-CMSE) Weds, Oct 16, 2024


Projection onto a line

```
https://www.desmos.com/calculator/cih7wy8oyg
```

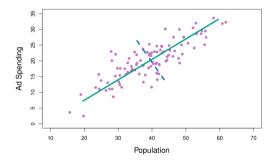

Dr. Munch (MSU-CMSE)

Different projections

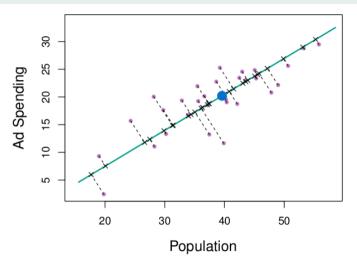
Histograms of Z values

Or. Munch (MSU-CMSE) Weds, Oct 16, 2024

The goal

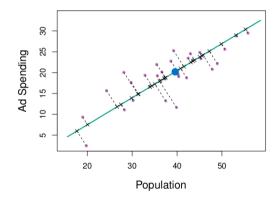

- Find good φ 's for some $M \ll p$
- Fit regression model on Z_i's using least squares

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \varepsilon_i$$


Section 3

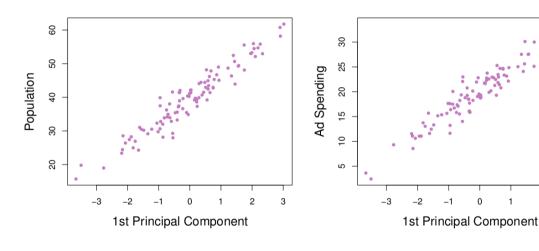
PCA

An example dataset


Projection onto first PC

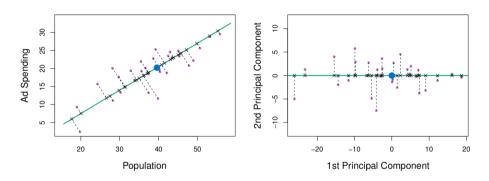
$$Z_1 = 0.839 \cdot (pop - \overline{pop}) + 0.544 \cdot (ad - \overline{ad})$$

Munch (MSU-CMSE) Weds, Oct 16, 2024


What does it mean to have the highest variance

Toy for learning PCA

```
https://www.desmos.com/calculator/qq14tyjz0z
```


Principal component scores

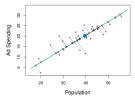
$$z_{i1} = 0.839 \cdot (\text{pop}_i - \overline{\text{pop}}) + 0.544 \cdot (\text{ad}_i - \overline{\text{ad}})$$

Or. Munch (MSU-CMSE) Weds, Oct 16, 2024

Another view

The other principal components

Dr. Munch (MSU-CMSE) Weds, Oct 16, 2024


Do PCA with Penguins

Dr. Munch (MSU-CMSE)

TL;DR

PCA

- Unsupervised dimensionality reduction
- Choose component Z₁ in the direction of most variance using only X_i's information
- Choose Z_2 and beyond by the same method after "getting rid" of info in the directions already explained

Next time

Lec #	Date			Reading	HW
12	Mon	9/30	Leave one out CV	5.1.1, 5.1.2	
13	Wed	10/2	k-fold CV	5.1.3	
14	Fri	10/4	More k-fold CV,	5.1.4-5	
15	Mon	10/7	k-fold CV for classification	5.1.5	
16	Wed	10/9	Subset selection	6.1	HW #4 Due Weds 10/9
17	Fri	10/11	Shrinkage: Ridge	6.2.1	
18	Mon	10/14	Shrinkage: Lasso	6.2.2	
19	Wed	10/16	Dimension Reduction	6.3	
20	Fri	10/18	Overflow, Possibly more dimension reduction?		HW #5 Due
	Mon	10/21	No class - Fall break		Fri 10/18
	Wed	10/23	Review		
	Fri	10/25	Midterm #2		

r. Munch (MSU-CMSE) Weds, Oct 16, 2024