Ch 3.3: Even More Linear Regression Lecture 7 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 13, 2024

Last time:

• 3.2 Multiple Linear Regression

Announcements:

- HW #2 Due Sunday!
- Office hours

2/29

- RSE, R²
- Confidence intervals and prediction intervals
- Qualitative predictors

Section 1

Continued: Questions to ask of your model

Linear Regression with Multiple Variables

• Predict Y on a multiple variables X

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p x_p + \varepsilon$$

- Find good guesses for $\hat{\beta}_0$, $\hat{\beta}_1, \cdots$.
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \dots + \hat{\beta}_p x_p$

- $e_i = y_i \hat{y}_i$ is the *i*th residual • RSS = $\sum_i e_i^2$
- RSS is minimized at *least* squares coefficient estimates

Review: Questions to ask of your model

- Is at least one of the predictors X₁,..., X_p useful in predicting the response?
- O all the predictors help to explain Y, or is only a subset of the predictors useful?

6/29

Q3

How well does the model fit the data?

7/29

Assessing the accuracy of the module

Almost the same as before

Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n-p-1}RSS}$$

R squared:

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
$$TSS = \sum_{i} (y_{i} - \overline{y})^{2}$$

- Just TV: $R^2 = 0.61$
- Just TV and radio: $R^2 = 0.89719$
- All three variables: $R^2 = 0.8972$

- Just TV: *RSE* = 3.26
- Just TV and radio: RSE = 1.681
- All three variables: RSE = 1.686

If all else fails, look at the data

Q4

Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Given estimates
$$\hat{\beta}_0, \cdots, \hat{\beta}_p$$
 for β_0, \cdots, β_p
Least squares plane:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_p X_p$$

estimate for the true population regression plane

$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Confidence vs Prediction Model

Confidence Interval

The range likely to contain the population parameter (mean, standard deviation) of interest.

Prediction Interval

The range that likely contains the value of the dependent variable for a single new observation given specific values of the independent variables.

Specific to the Advertising Data

Confidence interval: quantify the uncertainty surrounding the average sales over a large number of cities.

Advertising example:

If \$100K is spent on TV, and \$20K on radio, in each of *n* cities

95% Cl for sales: [10,985, 11,528].

Prediction Interval: quantify the uncertainty in sales for a particular city.

Advertising example:

Given that \$100,000 is spent on TV advertising and \$20,000 is spent on radio advertising in **Gotham City**

95% prediction interval for Gotham: [7,930, 14,580].

Comparing the two

Go take a look at the code under Q4

Review: Questions to ask of your model

- Is at least one of the predictors X₁,..., X_p useful in predicting the response?
- Oo all the predictors help to explain Y, or is only a subset of the predictors useful?
- I How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Section 2

Qualitative Predictors

Reminder: Qualitative vs Quantitative predictors

Quantitative:

Qualitative/Categorical:

New data set! Credit card balance

- own: house ownership
- student: student status
- status: marital status
- region: East, West, or South

- ... your variables aren't quantitative?
- Home ownership
- Student status
- Major
- Gender
- Ethnicity
- Country of origin

Example

Investigate differences in credit card balance between people who own a house and those who don't, ignoring the other variables. Create a new variable

$$x_i = egin{cases} 1 & ext{if } i ext{th person is a student} \ 0 & ext{if } i ext{th person is not a student} \end{cases}$$

Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
$$= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i\text{th person is student} \\ \beta_0 + \varepsilon_i & \text{if } i\text{th person isn't} \end{cases}$$

Interpretation

	coef	std err	t	P> t	[0.025	0.975]
Intercept	480.3694	23.434	20.499	0.000	434.300	526.439
Student[T.Yes]	396.4556	74.104	5.350	0.000	250.771	542.140

Model:

$$y = 480.36 + 396.46 \cdot x_{student}$$

Who cares about 0/1?

Old version: 0/1

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

Model:

$$\begin{split} y_i &= \beta_0 + \beta_1 x_i + \varepsilon_i \\ &= \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i \text{th person is student} \\ \beta_0 + \varepsilon_i & \text{if } i \text{th person isn't} \end{cases} \end{split}$$

Alternative version: ± 1

 $x_i = \begin{cases} 1 & \text{if } i \text{th person is a student} \\ -1 & \text{if } i \text{th person is not a student} \end{cases}$

Model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

=
$$\begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if ith person is student} \\ \beta_0 - \beta_1 + \varepsilon_i & \text{if ith person isn't} \end{cases}$$

Qualitiative Predictor with More than Two Levels

More on multiple levels

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
region[South]	-18.69	65.02	-0.287	0.7740
region[West]	-12.50	56.68	-0.221	0.8260

Do code section on "Playing with multi-level variables"

Next time

Lec #	Date			Reading	нพ
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1	
2	Wed	8/28	What is statistical learning?	2.1	
	Fri	8/30	Class Cancelled (Dr Munch out of town)		
	Mon	9/2	No class - Labor day		
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2	
4	4 Fri 9/6 Linear Reg 5 Mon 9/9 More Linear F		Linear Regression	3.1	HW #1 Due
5			More Linear Regression 3.1/3.		Sun 9/8
6	Wed	9/11	Even more linear regression	3.2.2	
7	Fri 9/13		Probably more linear regression	3.3	Hw #2 Due
8	Mon	9/16	Linear regression coding module		Dun 9/15
9	Wed	9/18	Intro to classification, Bayes classifier, KNN classifier	2.2.3	
10	Fri	9/20	Logistic Regression	4.1, 4.2, 4.3.1-3	
11	11 Mon 9/2		Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due Sun 9/22
	Wed	9/25	Review		