Ch 5.1.3-4: *k*-Fold Cross-Validation Lecture 13 - CMSE 381

Prof. Elizabeth Munch

Michigan State University :: Dept of Computational Mathematics, Science & Engineering

Wed, Oct 2, 2024

Last time:

- Validation Set
- LOOCV

Announcements:

- Exam 1 grades
- HW #4 Posted.
 - Changed Deadline! Due Wednesday Oct 9.

Lec #	Date			Reading	нพ
12	Mon	9/30	Leave one out CV	5.1.1, 5.1.2	
13	Wed	10/2	k-fold CV	5.1.3	
14	Fri	10/4	More k-fold CV,	5.1.4-5	
15	Mon	10/7	k-fold CV for classification	5.1.5	
16	Wed	10/9	Resampling methods: Bootstrap	5.2	HW #4 Due Weds 10/9
17	Fri	10/11	Subset selection	6.1	
18	Mon	10/14	Shrinkage: Ridge	6.2.1	
19	Wed	10/16	Shrinkage: Lasso	6.2.2	
20	Fri	10/18	Dimension Reduction	6.3	HW #5 Due
	Mon	10/21	No class - Fall break		Fri 10/18
	Wed	10/23	Review		
	Fri	10/25	Midterm #2		

Covered in this lecture

• *k*-fold CV

Section 1

Last time

Validation set approach

- Divide randomly into two parts:
 - Training set
 - Validation/Hold-out/Testing set
- Fit model on training set
- Use fitted model to predict response for observations in the test set
- Evaluate quality (e.g. MSE)

Problems

Ex. Predict mpg using horsepower

- Highly variable results, no consensus about the error
- Tends to overestimate test error rate

Leave One Out CV (LOOCV)

- Remove (x_1, y_1) for testing.
- Train the model on n-1 points: { $(x_2, y_2), \dots, (x_n, y_n)$ }
- Calculate $MSE_1 = (y_1 \hat{y}_1)^2$
- Remove (x_2, y_2) for testing.
- Train the model on n 1 points: { $(x_1, y_1), (x_3, y_3), \dots, (x_n, y_n)$ }
- Calculate $MSE_2 = (y_2 \hat{y}_2)^2$
- Rinse and repeat

Return the score:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \text{MSE}_i$$

Pros and Cons

- No variance
- Higher computation cost

Section 2

k-Fold CV

The idea

Mathy version

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold *U_i* and reserve for testing.
- Train the model on remaining points
- Calculate $MSE_i = \frac{1}{\ell} \sum_{(x_j, y_j) \in U_i} (y_j - \hat{y}_j)^2$
- Rinse and repeat

By hand first!

There are 10 students in the class, and we have data points for each. They have already been randomly permuted below. Write down the training/testing sets for a 3-fold CV

• Damien	Fold 1	Fold 2	Fold 3
• Alice			
• Greta			
 Jasmin 			
 Benji 			
 Inigo 			
 Firas 			
• Carina			
 Enrique 			
• Hubert			

Coding - Building k-fold CV

Pros and Cons

Pros:

Comparison

Next time

Lec #	Date			Reading	нพ
12	Mon	9/30	Leave one out CV	5.1.1, 5.1.2	
13	Wed	10/2	k-fold CV	5.1.3	
14	Fri	10/4	More k-fold CV,	5.1.4-5	
15	Mon	10/7	k-fold CV for classification	5.1.5	
16	Wed	10/9	Resampling methods: Bootstrap	5.2	HW #4 Due Weds 10/9
17	Fri	10/11	Subset selection	6.1	
18	Mon	10/14	Shrinkage: Ridge	6.2.1	
19	Wed	10/16	Shrinkage: Lasso	6.2.2	
20	Fri	10/18	Dimension Reduction	6.3	HW #5 Due
	Mon	10/21	No class - Fall break		Fri 10/18
	Wed	10/23	Review		
	Fri	10/25	Midterm #2		