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Announcements

Last time:

Cubic Splines

This lecture:

8.1 Decision Trees

Announcements:

HW #7 Sun, 11/10

Projects
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Section 1

Decision Trees
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Big idea

Image: https://marekbennett.com/2014/02/14/decision-tree/

Dr. Munch (MSU-CMSE) Mon, Nov 4, 2024 4 / 29

https://marekbennett.com/2014/02/14/decision-tree/


Subset of Hitters data
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First decision tree example
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Interpretation of example

Dr. Munch (MSU-CMSE) Mon, Nov 4, 2024 7 / 29



Coding a regression decision tree
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Regions defined by the tree
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Viewing Regions Defined by Tree
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How do we actually get the tree? Two steps

1 We divide the predictor space – that
is, the set of possible values for
X1,X2, · · · ,Xp — into J distinct and
non-overlapping regions,
R1,R2, · · · ,RJ .

2 For every observation that falls into
the region Rj , we make the same
prediction = the mean of the
response values for the training
observations in Rj .
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Step 1: How do we decide on Rjs?

Goal:
Find boxes R1, · · · ,RJ that minimize

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2

ŷRj
= mean response for training
observations in jth box
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Recursive Binary Splitting

Pick Xj

Pick s so that splitting into
{X | Xj < s} and {X | Xj ≥ s}
results in largest possible reduction in
RSS

R1(j , s) = {X | Xj < s}
R2(j , s) = {X | Xj ≥ s}

∑
i |xi∈R1(j ,s)

(yi − ŷR1)
2 +

∑
i |xi∈R2(j ,s)

(yi − ŷR2)
2
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Rinse and repeat
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Pruning
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Weakest Link Pruning
Also called Cost complexity pruning

For every α, there is a subtree T that
minimizes:

|T |∑
m=1

∑
i |xi∈Rm

(yi − ŷRm)
2 + α|T |

|T | = number of terminal nodes of T

Rm is rectangle for mth terminal node

ŷRm is mean of training observations
in Rm
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Algorithm version
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Messing with α
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Section 2

Classification Decision Tree
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Basic idea

p̂mk = proportion of training
observations in Rm from the kth class

E = 1−maxk(p̂mk)
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Gini index

G =
K∑

k=1

p̂mk(1− p̂mk)
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Entropy

D = −
K∑

k=1

p̂mk log p̂mk
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Example
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Pruning the example
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More coding!
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Linear models vs trees
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Pros/Cons

Pros: Cons:
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TL:DR

Split into regions by greedily
decreasing RSS

Prune tree by using cost
complexity

Not robust - Next time,
figure out how to aggregate
trees
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Next time
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