Ch 8.1: Decision Trees

Lecture 24 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, Nov 4, 2024

Announcements

Last time:

Cubic Splines

This lecture:

• 8.1 Decision Trees

Announcements:

- HW #7 Sun, 11/10
- Projects

Lec #	Date		Polynomial & Step Functions	Reading	HW	
21	Mon 10/28			7.1,7.2		
22	Wed	10/30	Step Functions; Basis functions; Start Splines	7.2 - 7.4		
23	Fri	11/1	Regression Splines	7.4	HW #6 Due Sun 11/3	
24	Mon	11/4	Decision Trees	8.1		
25	Wed	11/6	Class Cancelled (Dr Munch	s Cancelled (Dr Munch out of town)		
26	Fri	11/8	Random Forests	8.2.1, 8.2.2	HW #7 Due Sun 11/10	
27	Mon	11/11	Maximal Margin Classifier	9.1		
28	Wed	11/13	SVC	9.2		
29	Fri	11/15	SVM	9.3, 9.4	HW #8 Due	
30	Mon	11/18	Single layer NN	10.1	Sun 11/17	
31	Wed	11/20	Multi Layer NN	10.2		
32	Fri	11/22	CNN	10.3	HW #11	
33	Mon	11/25	TBD: Unsupervised learning/clustering	12.1, 12.4?	Due Sun 11/24	
	Wed	11/27	Virtual: Project office hours			
	Fri	11/29	No class - Thanksgiving			
	Mon	12/2	Review			
	Wed	12/4	Midterm #3			
	Fri	12/6	No class - EGR Design Day		Project due	

Section 1

Decision Trees

Big idea

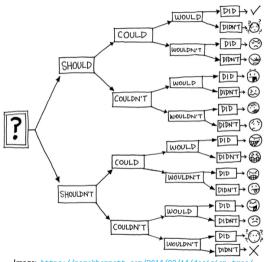
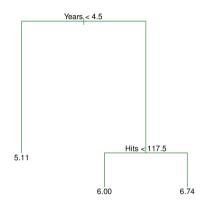
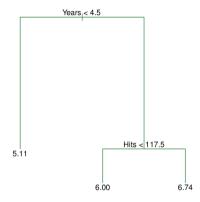


Image: https://marekbennett.com/2014/02/14/decision-tree/

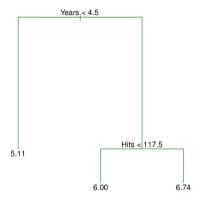

Mon. Nov 4, 2024

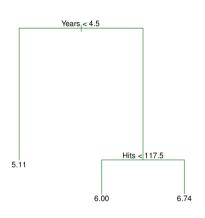
Subset of Hitters data

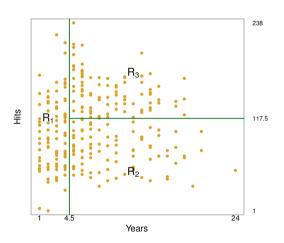

	Hits	Years	Salary	LogSalary
1	81	14	475.0	6.163315
2	130	3	480.0	6.173786
3	141	11	500.0	6.214608
4	87	2	91.5	4.516339
5	169	11	750.0	6.620073
317	127	5	700.0	6.551080
318	136	12	875.0	6.774224
319	126	6	385.0	5.953243
320	144	8	960.0	6.866933
321	170	11	1000.0	6.907755

First decision tree example

	Hits	Years	LogSalary
1	81	14	6.163315
2	130	3	6.173786
3	141	11	6.214608
4	87	2	4.516339
5	169	11	6.620073
317	127	5	6.551080
318	136	12	6.774224
319	126	6	5.953243
320	144	8	6.866933
321	170	11	6.907755

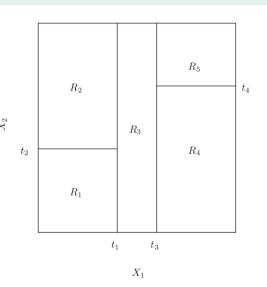

Interpretation of example


Coding a regression decision tree


Dr. Munch (MSU-CMSE)

Regions defined by the tree

Viewing Regions Defined by Tree



10 / 29

Dr. Munch (MSU-CMSE) Mon, Nov 4, 2024

How do we actually get the tree? Two steps

- We divide the predictor space that is, the set of possible values for X₁, X₂, · · · , X_p — into J distinct and non-overlapping regions, R₁, R₂, · · · , R_J.
- ② For every observation that falls into the region R_j , we make the same prediction = the mean of the response values for the training observations in R_j .

11 / 29

funch (MSU-CMSE) Mon, Nov 4, 2024

Step 1: How do we decide on R_j s?

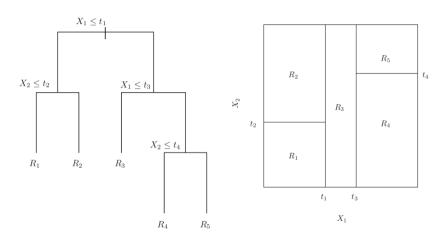
Goal:

Find boxes R_1, \dots, R_J that minimize

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 $\hat{y}_{R_j} = \text{mean response for training}$ observations in jth box

Recursive Binary Splitting

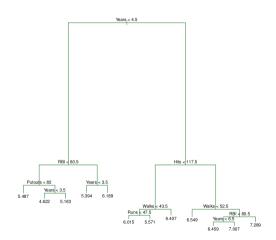

- \bullet Pick X_i
- Pick s so that splitting into $\{X \mid X_i < s\} \text{ and } \{X \mid X_i \ge s\}$ results in largest possible reduction in **RSS**

$$R_1(j,s) = \{X \mid X_j < s\}$$

 $R_2(j,s) = \{X \mid X_j \ge s\}$

$$\sum_{i|x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i|x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Mon. Nov 4, 2024


Rinse and repeat

14 / 29

. Munch (MSU-CMSE) Mon, Nov 4, 2024

Pruning

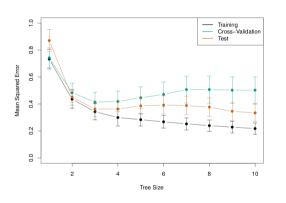
Weakest Link Pruning

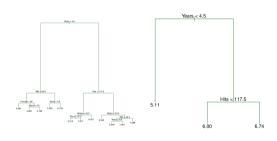
Also called Cost complexity pruning

For every α , there is a subtree T that minimizes:

$$\sum_{m=1}^{|T|} \sum_{i|x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- |T| = number of terminal nodes of T
- R_m is rectangle for mth terminal node
- \hat{y}_{R_m} is mean of training observations in R_m

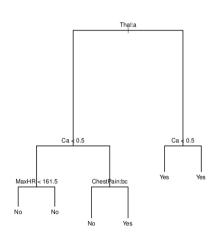

Algorithm version


Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Dr. Munch (MSU-CMSE) Mon, Nov 4, 2024

Messing with α



Section 2

Classification Decision Tree

r. Munch (MSU-CMSE) Mon, Nov 4, 2024

Basic idea

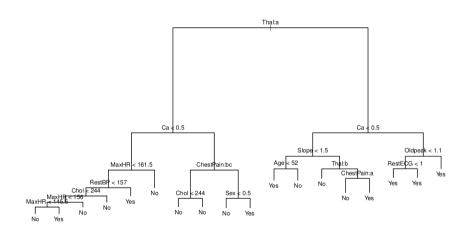
• \hat{p}_{mk} = proportion of training observations in R_m from the kth class

20 / 29

• $E = 1 - \max_k(\hat{p}_{mk})$

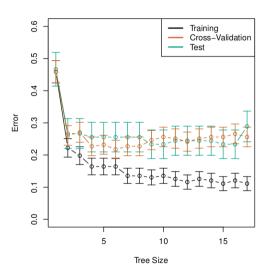
Munch (MSU-CMSE) Mon, Nov 4, 2024

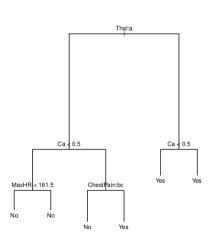
Gini index


$$G = \sum_{k=1}^K \hat{
ho}_{mk} (1-\hat{
ho}_{mk})$$

Entropy

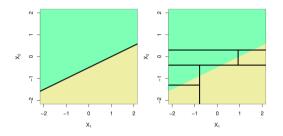
$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

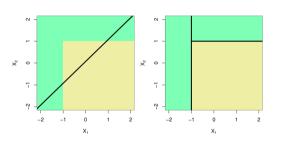

Mon, Nov 4, 2024


Example

Munch (MSU-CMSE) Mon, Nov 4, 2024

Pruning the example


24 / 29


. Munch (MSU-CMSE) Mon, Nov 4, 2024

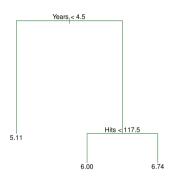
More coding!

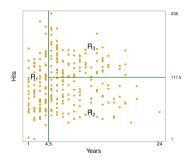
Dr. Munch (MSU-CMSE

Linear models vs trees

26 / 29

r. Munch (MSU-CMSE)


Mon, Nov 4, 2024


$\mathsf{Pros}/\mathsf{Cons}$

Pros: Cons:

TL:DR

- Split into regions by greedily decreasing RSS
- Prune tree by using cost complexity
- Not robust Next time. figure out how to aggregate trees

Mon. Nov 4, 2024

Next time

Lec #	Date			Reading	HW		
21	Mon	10/28	Polynomial & Step Functions	7.1,7.2			
22	Wed	10/30	Step Functions; Basis functions; Start Splines	7.2 - 7.4			
23	Fri	11/1	Regression Splines	7.4	HW #6 Due Sun 11/3		
24	Mon	11/4	Decision Trees	8.1			
25	Wed	11/6	Class Cancelled (Dr Munch out of town)				
26	Fri	11/8	Random Forests	8.2.1, 8.2.2	HW #7 Due		
27	Mon	11/11	Maximal Margin Classifier	9.1	Sun 11/10		
28	Wed	11/13	SVC	9.2			
29	Fri	11/15	SVM	9.3, 9.4	HW #8 Due		
30	Mon	11/18	Single layer NN	10.1	Sun 11/17		
31	Wed	11/20	Multi Layer NN	10.2			
32	Fri	11/22	CNN	10.3	HW #11		
33	Mon	11/25	TBD: Unsupervised learning/clustering	12.1, 12.4?	Due Sun 11/24		
	Wed	11/27	Virtual: Project office hours				
	Fri	11/29	No class - Thanksgiving				