Ch 3.2: Multiple Linear Regression

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds, Sep 11, 2024

Announcements

Last time:

• 3.1 Linear regression

Announcements:

 Homework #2 Due Sunday on Crowdmark

Covered in this lecture

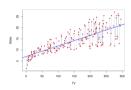
- Multiple linear regression
- Hypothesis test in that case
- Forward and Backward Selection

Or. Munch (MSU-CMSE) Weds, Sep 11, 2024

Section 1

Review from last time

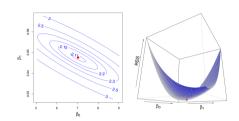
Linear Regression with One Variable



Predict Y on a single variable X

$$Y \approx \beta_0 + \beta_1 X$$

- Find good guesses for $\hat{\beta}_0$, $\hat{\beta}_1$.
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- $e_i = y_i \hat{y}_i$ is the *i*th residual
- RSS = $\sum_i e_i^2$



 RSS is minimized at least squares coefficient estimates

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Evaluating the model

- Linear regression is unbiased
- Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where
$$\sigma^2 = \operatorname{Var}(\varepsilon)$$

• Estimate σ : $\hat{\sigma}^2 = \frac{RSS}{n-2}$

• The 95% confidence interval for β_1 approximately takes the form

$$\hat{eta}_1 \pm 2 \cdot \mathrm{SE}(\hat{eta}_1)$$

• Hypothesis test:

$$H_0: \ \beta_1 = 0$$

 $H_a: \ \beta_1 \neq 0$

▶ Test statistic $t = \frac{\hat{eta}_1 - 0}{\operatorname{SE}(\hat{eta}_1)}$

Assessing the accuracy of the model

Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$

R squared:

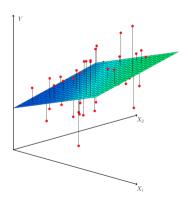
$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
$$TSS = \sum_{i} (y_{i} - \overline{y})^{2}$$

Section 2

Multiple Linear Regression

Setup

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \varepsilon$$



Estimation and Prediction

Given estimates $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \cdots, \hat{\beta}_p$, prediction is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

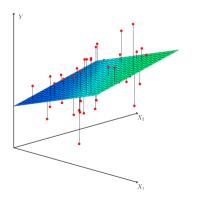
Minimize the sum of squares

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$
$$= \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 - \dots - \hat{\beta}_p x_p)$$

Coefficients are closed form but UGLY

Advertising data set example

Sales =
$$\beta_0 + \beta_1 \cdot TV + \beta_2 \cdot radio + \beta_3 \cdot newspaper$$



	Coefficient
Intercept	2.939
TV	0.046
radio	0.189
newspaper	-0.001

11 / 24

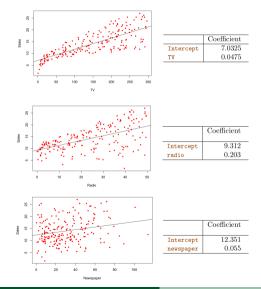
. Munch (MSU-CMSE) Weds, Sep 11, 2024

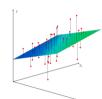
Interpretation of coefficients

$$\mathtt{Sales} = \beta_0 + \beta_1 \cdot \mathtt{TV} + \beta_2 \cdot \mathtt{radio} + \beta_3 \cdot \mathtt{newspaper}$$

	Coefficient
Intercept	2.939
TV	0.046
radio	0.189
newspaper	-0.001

Single regression vs multi-regression





	Coefficient
Intercept	2.939
TV	0.046
radio	0.189
newspaper	-0.001

Correlation matrix

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Coding group work

Run the section titled "Multiple Linear Regression"

Section 3

Ch 3.2.2: Questions to ask of your regression

r. Munch (MSU-CMSE) Weds, Sep 11, 2024

Question 1

Is at least one of the predictors X_1, \dots, X_p useful in predicting the response?

Q1: Hypothesis test

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

 H_a : At least one β_j is non-zero

F-statistic:

$$F = \frac{(\mathit{TSS} - \mathit{RSS})/p}{\mathit{RSS}/(n-p-1)} \sim F_{p,n-p-1}$$

The F-statistic for the hypothesis test

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

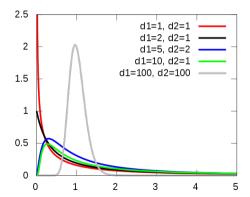


Image from wikipedia, By IkamusumeFan - Own work, CC BY-SA 4.0,

Dr. Munch (MSU-CMSE) Weds, Sep 11, 2024

Do Q1 section in jupyter notebook

r. Munch (MSU-CMSE) Weds, Sep 11, 2024

Q2

Do all the predictors help to explain Y, or is only a subset of the predictors useful?

r. Munch (MSU-CMSE) Weds, Sep 11, 2024

Q2: A first idea

Great, you know at least one variable is important, so which is it?....

Or. Munch (MSU-CMSE) Weds, Sep 11, 2024

Do Q2 section in jupyter notebook

r. Munch (MSU-CMSE) Weds, Sep 11, 2024

Why is this a bad idea?

Or. Munch (MSU-CMSE) Weds, Sep 11, 2024

Next time

Lec #	Date		Pate Reading		нw	
1	Mon	8/26	Intro / First day stuff / Python Review Pt 1	1		
2	Wed	8/28	What is statistical learning?	2.1		
	Fri	8/30	Class Cancelled (Dr Munch out of town)			
	Mon	9/2	No class - Labor day			
3	Wed	9/4	Assessing Model Accuracy	2.2.1, 2.2.2		
4	Fri	9/6	Linear Regression	3.1	HW #1 Du	
5	Mon	9/9	More Linear Regression	3.1/3.2	Sun 9/8	
6	Wed	9/11	Even more linear regression	3.2.2		
7	Fri	9/13	Probably more linear regression	3.3	Hw #2 Du Dun 9/15	
8	Mon	9/16	Linear regression coding module			
9	Wed	9/18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Fri	9/20	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	Mon	9/23	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due Sun 9/22	
	Wed	9/25	Review			